
Monitoring Numerical Climate Simulations

A Tool for the EC-Earth Climate Model

Wissenschaftliche Arbeit zur Erlangung des Grades
B.Sc. Ingenieurwissenschaften
an der Studienfakultät Munich School of Engineering
der Technischen Universität München.

Geprüft von Univ.-Prof. Dr. Hans-Joachim Bungartz

Lehrstuhl für Wissenschaftliches Rechnen, TUM

Betreut von Dr. Uwe Fladrich

Rossby Centre, Sveriges meteorologiska och hydrologiska institut

Eingereicht von Valentina Schüller

Hohenzollernstraße 61

80796 München

+49 176 221 464 19

Eingereicht am München, den 10.09.2020

Abstract

Climate model experiments are time consuming numerical simulations. Real-time monitoring of

experiments allows to spot problems in the model performance early on. Conspicuous results or

changes in the computational performance can be detected at runtime. Users can then interrupt

the experiment, thus saving computational resources. While in-depth and model-independent

analysis tools exist for finalized and post-processed output, monitoring is model-specific and uses

raw output data. With changing configurations and experiment setups, monitoring tools must be

extendable and should not be limited to individual model components. For the latest version of

the European community Earth system model EC-Earth, a Python based monitoring application

has been developed. The tool tracks the physical and computational performance of ongoing

simulations based on established metrics and diagnostics in climate science. This thesis presents

design considerations and decisions, as well as the status quo of its feature set. Although the

concrete implementation is optimized for EC-Earth 4, the software design and choice of monitoring

diagnostics is of broader relevance. The monitoring tool’s capabilities are shown and discussed

based on an exemplary and realistic simulation.

Kurzzusammenfassung

Numerische Simulationen zur Klimavorhersage sind zeit- und rechenintensiv. Komplikationen

während eines Experiments können durch Monitoring frühzeitig erkannt werden. Rückgänge der

Rechengeschwindigkeit oder unrealistische Ergebnisse werden so in Echtzeit detektierbar. Mod-

ellnutzer*innen können das Experiment bei Problemen unterbrechen und dadurch sparsamer mit

Rechenressourcen umgehen. Während es modellübergreifende Anwendungen zur tiefgreifenden

Analyse von nachbearbeiteten Outputdaten gibt, ist Monitoring modellspezifisch und arbeitet mit

unverarbeitetem Output. Da sich die benötigten Konfigurationen und Experimenteinstellungen

immer wieder ändern, müssen Monitoring-Applikationen erweiterbar sein. Darüber hinaus sollten

sie sich nicht auf einzelne Komponenten spezialisieren. Für die neueste Version des europaweit

entwickelten Erdsystemmodells EC-Earth wurde eine Python-basierte Monitoring-Anwendung

entwickelt. Sie überwacht die physikalische und rechnerische Leistung laufender Experimente,

basierend auf in den Klimawissenschaften etablierten Metriken und Diagnostiken. Diese Bachelor-

arbeit stellt Designüberlegungen und -entscheidungen für das Tool vor, genauso wie die momentan

implementierten Funktionen. Die hier entwickelte Implementierung ist auf EC-Earth 4 ausgerichtet,

doch das Software-Design und die Auswahl der Monitoring-Diagnostiken sind nicht auf dieses

Klimamodell beschränkt. Anhand eines exemplarischen und realistischen Experiments wird das

Potenzial der neuen Software gezeigt und diskutiert.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 1

Contents

1 Introduction.. 3
2 The EC-Earth Climate Model ... 5
3 Design Principles and Architecture ... 8

3.1 Design Principles .. 8

3.2 Existing Infrastructure ... 9

3.3 Concept and Architecture ... 10

3.3.1 Diagnostics ... 10

3.3.2 Architecture .. 11

3.3.3 The Structure of Processing Tasks.. 12

3.3.4 Diagnostics on Disk ... 13
4 Implemented Monitoring Tasks... 16

4.1 Processing Tasks for Computational Performance ... 16

4.1.1 Scalar ... 17

4.1.2 DiskusageRteScalar ... 18

4.1.3 SimulatedyearsRteScalar .. 18

4.1.4 Timeseries .. 18

4.2 Processing Tasks for NEMO and SI3 ... 20

4.2.1 NemoGlobalMeanYearMeanTimeseries.. 20

4.2.2 NemoAllMeanMap .. 21

4.2.3 NemoTimeMeanTemporalmap .. 21

4.2.4 Si3HemisSumMonthMeanTimeseries... 23

4.2.5 Si3HemisPointMonthMeanAllMeanMap .. 24

4.2.6 Si3HemisPointMonthMeanTemporalmap ... 25

4.3 Processing Tasks for OpenIFS .. 25

4.3.1 OifsGlobalMeanYearMeanTimeseries .. 26

4.3.2 OifsAllMeanMap and OifsYearMeanTemporalmap.................................. 27

4.4 Presentation Tasks ... 27

4.4.1 Markdown .. 28

4.4.2 Redmine ... 30
5 Exemplary Monitoring Results ... 32

5.1 Performance Results of EC-Earth 4 ... 32

5.2 Computational Performance of the Monitoring Tasks .. 35
6 Discussion and Outlook ... 37
7 Code Availability and Resources ... 41

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 2

1. Introduction

Numerical climate simulations are one important application of high-performance computing

(HPC). Large code components run in a coupled and parallel manner for a long time: days, weeks,

and even months, depending on the experiment. These simulations have a lot of output that gets

analyzed in-depth and compared with other climate models as well as observational data. Both

of these parts–simulation and analysis–are time- and labor-intensive tasks. It is thus crucial to

check the status and spot problems of a simulation early on. Mistakes in the experiment setup,

unexpected outcomes of initial data or machine problems can happen every once in a while. But

especially when tuning the climate model or testing a new setup, it is helpful to see general effects

of changed input in real time.

Getting insight into the current model state is the goal of monitoring numerical climate simulations.

This implies information about the experiment setup and progress, as well as model performance.

But how does one measure the performance of a climate model? From an HPC perspective,

this is usually understood as a measure of speed and efficiency in a computational sense–but

this is rarely meant in climate science. Here, a distinction can be made between physical and

computational performance. The physical performance of a model quantifies how well it is able

to represent the actual climate on Earth. Characteristic measures for this will be explained when

discussing the implementation in chapter 4. Computational performance of climate simulations is

closer to the classical HPC interpretation, but not the same. Climate models are highly complex

applications. The maximum sustained flops and percent of peak of a simulation are not enough to

compare climate models or different experiments. Besides being insufficient, they are typically

not even quantities of interest for climate model developers. Instead, combinations of experiment

and machine information are often used as indicators of computational performance. Common

examples are the simulated years per day (SYPD) or the core hours per simulated year (CHSY).

(Balaji et al., 2017) In this thesis, such quantities of interest and relevance are referred to as

diagnostics, no matter if they are indicators for the computational or physical performance of a

simulation.

Since climate models differ in functionality, structure, and complexity, there is no single tool that

can monitor multiple different models. This is especially clear for the computational performance.

Depending on the runtime environment of a model, a tool would need to get the necessary

information in a multitude of ways. But physical performance is not much different: While

published results usually adhere to international standards, the immediate model output needs to

be post-processed before this is the case. There exist model-independent analysis tools, e.g., the

Earth System Model Evaluation Tool (ESMValTool, Eyring, Righi, et al., 2016) and the Program

for Climate Model Diagnosis and Intercomparison (PCMDI) metrics (Gleckler et al., 2016). Their

relevance is illustrated in Eyring, Bony, et al., 2016. These tools contain evaluation procedures

of varying complexity to compare multiple model runs, models, and observed data. Still, they

are inapplicable to get automated real-time information about a single model run. To monitor

simulations, tools have to be individually developed for each climate model. Nevertheless, the

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 3

selection of monitoring diagnostics is not model-specific–and the design considerations behind

such a tool are generic and thus applicable not only to climate models.

For the new version of the EC-Earth climate model, EC-Earth 4, a monitoring tool has been devel-

oped. The programming task for this was defined as follows: The tool shall monitor computational

and physical performance diagnostics of the currently ongoing simulation in real time. It is to be

built using the same framework as the new runtime environment of this climate model. In this

context and thesis, monitoring implies: no comparison with observational data and no comparison

with past model runs. It is thus clearly distinguishable from analysis. EC-Earth output can be

post-processed and then analyzed with ESMValTool, there is no need to replace this workflow. The

new EC-Earth monitoring tool is not limited to one component of the model (e.g., the atmosphere

or ocean). Using and developing it is characterized by modularity. Extending it is possible by

writing a few lines of Python code, separated from the existing parts.

This thesis gives an overview of the concepts and structure of the monitoring tool. Furthermore,

it shows and discusses the current functionality, future capabilities, and limitations of the tool.

The remainder of it is structured as follows: In chapter 2, a short description of EC-Earth 4, its

components, and relevance is given. Chapter 3 describes the design principles and architecture

of the monitoring tool. Chapter 4 contains an overview of the implemented diagnostics, chapter

5 presents examples of monitored EC-Earth 4 runs. The thesis concludes in chapter 6 with a

summary, brief discussion, and outlook.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 4

2. The EC-Earth Climate Model

EC-Earth is a climate model developed by a Europe-wide consortium of climate research groups.

EC-Earth 4 is the newest version of this model and currently in development. The monitoring

tool addressed in this thesis has been designed for use with EC-Earth. For this reason, a short

introduction to the concepts, components, and relevance of the model is given in this chapter.

The Earth’s climate is shaped by interconnected physical processes on different domains and

varying spatial and temporal scales. For example, atmospheric winds drive oceanic circulation,

evaporation leads to cloud coverage, changes in atmospheric chemistry influence oceanic acidity.

In climate modeling, the processes are usually separated into software components that represent

the physical domains. They are then coupled to provide boundary conditions for each other.

EC-Earth 4 is not special in this regard. Currently, the model contains the following components:

NEMO is a model for ocean (thermo)dynamics that contains components for sea ice modeling

(NEMO-SI3), and ocean biogeochemistry (NEMO-TOP, making use of the PISCES model).

NEMO-SI3 is the successor of the Louvain-La-Neuve sea ice model LIM3 (Rousset et al., 2015)

and will be referred to as SI3 for the remainder of this thesis. In-depth explanations of these

models can be found in the NEMO reference manual by Gurvan et al., 2019. Key points from

it are given in the following. The primitive equations of the ocean model are the Navier-Stokes

equations–simplified with various hypotheses and approximations–, as well as a nonlinear equation

of state. The model uses centered, second-order finite difference approximations on a curvilinear

grid for the numerical solution. It is a tripolar ORCA grid, which means it "has no singularity

point inside the computational domain since two north mesh poles are introduced and placed on

lands" (Gurvan et al., 2019). This removes numerical difficulties during computation. However, it

has to be considered when visualizing NEMO/SI3 output, as will be explained in section 4.4. The

NEMO grid is staggered, as is often found in fluid dynamics solvers (cf. Frisch, 2014). This means

that scalar values are stored in the center of the grid cell and vector-valued quantities are stored

at their respective cell boundaries. When writing output, NEMO treats the center and boundary

points as four different, shifted grids: the T grid for scalars, and the U, V, W grids for vectors. The

ocean model writes one NetCDF file per grid in the desired frequency. SI3 uses the scalar grid

for its output which is written to separate files. A typical choice for the output frequency of an

experiment is monthly output since the ocean is a slowly responding system with high seasonal

variability but few large scale diurnal processes. Nevertheless, other frequencies may be chosen

instead or in addition. The cell dimensions for NEMO and SI3 output are stored in a separate

NetCDF file containing the domain configuration.

OpenIFS is the physical model for the atmosphere in EC-Earth 4. It is developed by the European

Centre for Medium-Range Weather Forecasts (ECMWF). OpenIFS is a portable version of the

ECMWF’s Integrated Forecasting System (IFS) which has been used in past versions of EC-Earth

(cf. Hazeleger et al., 2010). The relevant documentation for the model can be found at ECMWF,

2019a, ECMWF, 2019b, ECMWF, 2019c. Again, key points from it are explained in the following:

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 5

OpenIFS "uses a spectral transform method to solve numerically the equations governing the

spatial and temporal evolution of the atmosphere." (ECMWF, 2020) While a lot of the computation

happens in spectral space, the physical parametrizations and advection are calculated in the physical,

so-called grid-point space. The horizontal grid is a reduced Gaussian grid, more information about

it can be found in the paper by Malardel et al., 2016. OpenIFS output is separated into spectral and

grid-point space files. The developed monitoring tool only processes grid-point space data, where

the relevant variables for monitoring are stored. Since OpenIFS uses a different grid than NEMO,

its output has to be treated very differently than ocean and sea ice data. This is amplified by the

fact that OpenIFS output is written to GRIB, not NetCDF, files at the time of writing this thesis.

The atmosphere has a much lower heat capacity than the ocean, atmospheric processes have strong

diurnal variability. Thus, typical OpenIFS output is of much higher frequency (e.g., 6 hours) than

NEMO/SI3, although this output is stored in one GRIB file per month.

These components are linked to each other by the OASIS coupler (Valcke, 2013). EC-Earth also

contains the XML I/O server (XIOS), a library to manage input and output of climate models

efficiently.

A climate model can be classified as a general circulation model (GCM) or an Earth system model

(ESM). While a GCM contains components for the (thermo)dynamics of atmosphere and ocean

only, an ESM is not limited to this. Currently, EC-Earth 4 is configured to be a general circulation

model. Components for vegetation, air chemistry, ocean chemistry and more will be activated in

the future, making EC-Earth 4 an Earth system model.

For a numerical climate simulation, all of these components have to be compiled alongside each

other. During runtime, the computation input and results get shared between the individual

components. A climate model experiment consists of multiple self-contained parts: Instead of

simulating the whole time domain of an experiment at once, the model stops and restarts with

a predetermined frequency. For example, a 50 year-long simulation can be separated into 50,

consecutively executed, so-called legs. In this case one leg corresponds to one simulated year of the

experiment. The components write the simulation output to a specified directory, the run directory.

Here, the output files are grouped into leg folders. At the end of each leg the computation stops

and EC-Earth restarts with the current internal state. This repeats until the end of the simulation is

reached. The length of the legs can be adjusted by the user. An exemplary one-year leg folder of

EC-Earth 4 in its current state would contain about 60 NetCDF files written by NEMO and SI3

and 36 GRIB files written by OpenIFS. This gives an idea how data intensive climate simulations

are, although the numbers vary based on the chosen setup.

EC-Earth 3 has been participating in the Climate Model Intercomparison Project (CMIP) phases 5

and 6, a global research effort to analyze results from various Earth system models. CMIP data

is used extensively in the assessment and special reports by the International Panel on Climate

Change (IPCC). EC-Earth 4, the latest version, is still under development but will fully replace

EC-Earth 3 in the coming years. There exists a monitoring tool for the ocean in EC-Earth 3 called

Barakuda (Brodeau, 2017). Barakuda is built using shell scripts and depends on external command

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 6

line tools, which makes it hard to maintain and difficult to extend. It only monitors NEMO output.

The monitoring tool developed in this thesis is an extendable, component-independent Python

package based on the new runtime management tool for EC-Earth 4.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 7

3. Design Principles and Architecture

To create a monitoring tool is mostly an application of modern software design and development.

Thus, an overview and discussion of the general considerations is given in this chapter from a

relatively abstract perspective. It starts with a definition of the core design principles in section 3.1.

Concepts and details of the existing infrastructure are laid out in section 3.2. At the end of this

chapter, the structure of the monitoring tool is explained in detail.

3.1. Design Principles

The developed monitoring tool sticks to a few key principles that affect both functionality and

implementation. It is designed to be helpful, robust, user-friendly, modular, and extendable:

• helpful: Monitoring a simulation should be beneficial to the user. This is a central requirement

and important for the selection of diagnostics to implement.

• robust: An EC-Earth run must not be strongly affected by the monitoring tool in a negative

way. In essence, this has two meanings: First of all, the tool should not slow down the

model significantly. Secondly, the EC-Earth run should not interrupt because of errors in the

monitoring tool. They should be logged and otherwise ignored. This principle is the main

reason for the decision to keep the interaction between model and monitoring tool as small as

possible.

• user-friendly: As Craig et al., 2005 mention, "like many other scientific applications, ’using’

a climate model implies editing source code in many cases". EC-Earth users modify shell

scripts or change parameters in Fortran namelist files to set up an experiment. User-friendliness

here does therefore not imply the need for a simplistic GUI. Still, the user-software interaction

should be consistent with the rest of the EC-Earth 4 runtime environment. In general, setting

up a monitored experiment should not be more complex than configuring a regular simulation.

• modular: This allows for the tool to be maintainable in the long run. It should consist of

independent building blocks that can be added, removed or changed as necessary.

• extendable: EC-Earth 4 is still under development. As the climate model will grow in the next

months and years, the needs and possibilities of monitoring its simulations will change as well.

Reacting to this must be possible with the monitoring tool.

It is the intent of this design to enable extension of the monitoring tool without overhauling the

structure. The main purpose of the work behind this thesis was to develop a stable foundation which

can be built upon in the future. The tool already enables the creation of meaningful diagnostics,

and these will be laid out in chapter 3. But they are meant to be the groundwork for more, not the

end of the line. An important consequence of this is that the monitoring tool was developed as

an open-source, object-oriented Python code with automated tests and high test coverage. The

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 8

package furthermore contains a user documentation and developing guidelines (see the final chapter

Code Availability and Resources for more information).

In the course of developing the monitoring tool, a lot of essential decisions had to be made. In

general, these choices should be transparent and comprehensible to future users and developers

alike. Whenever possible, the tool falls back on well-established climate modeling standards. This

final design principle works in favor of all others and concludes this section.

3.2. Existing Infrastructure

The monitoring tool builds upon existing components: It is based on the same Python package as

the new compilation and runtime environment of EC-Earth 4. Furthermore, it is controlled by this

runtime environment and uses the model output as input information. Since the EC-Earth output

structure has been laid out in chapter 2, this section focuses on the Python framework behind both

the runtime environment and monitoring tool, ScriptEngine.

At its core, "ScriptEngine is a lightweight and extensible framework for executing scripts written

in YAML." (Fladrich, 2020) 1 A user creates a YAML script and passes it to the ScriptEngine

command line tool se. An exemplary, parsable script is given in Listing 3.1. When executed, the

string Hello, Earth! will be shown on screen. YAML scripts for ScriptEngine always follow a

similar structure: They contain a list of actions to complete, with input parameters for each element

of the list.2 For EC-Earth 4, the scripts contain procedures to store experiment parameters, create

directory structures, copy files, or add jobs to the queues of computing nodes.

- context:

planet: Earth

- echo:

msg: "Hello , {{ planet }}!"

Listing 3.1: Exemplary YAML script for ScriptEngine.

The words context and echo in this script are representations of an essential building block of

ScriptEngine: the task. In general, a task is an entity which completes a desired action. It is both

a concept and, in ScriptEngine, a Python class. To differentiate between these two facets, the

Python class Task is capitalized in this thesis, whereas the concept is not. The central element of

the Task class is its run() method. When an instantiated Task’s run() method is called, the action

gets executed. The YAML representation of the task concept consists of a name and required input

parameters. context and echo are keywords mapped to the classes Context and Echo–both inherit

from the base class Task.3 When a user calls the ScriptEngine command line tool se, it parses the

YAML file and instantiates Context and Echo with the input parameters planet and msg. Then, se

calls their run() method.

1 More information on this package, as well as the source code, can be found at https://github.com/uwefladrich/
scriptengine.

2 These can also be combined with loops and conditional clauses. Since they are not essential for the structure of the
monitoring tool, these more advanced capabilities of ScriptEngine have been left out.

3 The name of the YAML representation is very similar to the name of the Python class, although it does not have to be.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 9

Each implemented ScriptEngine task inherits from the generic Task class. The core package

contains some basic tasks (find a file, change directory, execute a command in the shell, etc.). Since

ScriptEngine is implemented as a Python namespace package (Smith, 2012), other developers can

add onto the existing tasks with new task sets. This is the basis for the extensions described in this

thesis.

The final essential piece of ScriptEngine is the context. The context is a construct which contains

all the information to execute tasks. This includes input parameters but is not limited to it. It is

implemented as a single, although possibly nested, Python dictionary. The context is filled both

with user-specified data from the scripts, using the context task, and ScriptEngine metadata during

execution. In Listing 3.1, the key planet is stored with the value "Earth". Other metadata stored in

the context includes the working directory the command line tool was started in, _se_ocwd. All

information in the context can be accessed by tasks. This is how the echo task determines the value

of planet.

The monitoring tool is based on ScriptEngine and its structure. Monitoring an EC-Earth run thus

consists of parsing one or multiple scripts using the se command line tool. These make use of

newly developed tasks, information from the EC-Earth 4 output, and information from the context.

3.3. Concept and Architecture

3.3.1. Diagnostics

At the beginning of this thesis, diagnostics were defined as quantities of interest and relevance that

inform about the performance of a climate model. In the monitoring case, these refer to the current

model run. The monitoring tool’s purpose is to compute diagnostics and visualize them in a fitting

way. An important step developing the monitoring tool was thus to further define diagnostics:

What type of objects can such quantities be?

In literature on climate model analysis and performance, the term performance diagnostic is

established. It is often distinguished from another term, metrics: Whereas performance metrics for

climate models are scalars (cf. Gleckler et al., 2008, Ma et al., 2013, Reichler and Kim, 2008),

diagnostics are not limited to this type of data. Usually, metrics are computed by an aggregation

of model output and observational data. Diagnostics, however, are not per se linked to external

data–and they are not only scalars. In Gleckler et al., 2008, examples for diagnostic types are "e.g.

maps, time series, power spectra". At another point they speak of "maps, time series, distributions,

etc." The monitoring tool for now supports and distinguishes between four general diagnostic

objects: scalars, time series, and maps that are either time-dependent or not. This categorization

results from considerations regarding the dimension properties of desired quantities to monitor.

An overview of the diagnostic types and their differences can be seen in Table 1, including some

examples that motivate this structure. For the spatio-temporal data in time-dependent maps, the

name "temporal maps" was chosen. It is used by the geographic information system ArcGIS for

the same type of data (ESRI, 2012). In the future, the list of diagnostic types may be extended if it

proves to be necessary.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 10

Diagnostic Type
Dimensionality

Example
space time

scalar 0 0
experiment description

current size of output directory

time series 0 1
simulated years per day over time

arctic sea ice volume over time

map 2 0 simulation average of the sea surface temperature

temporal map 2 1 arctic sea ice distribution over time

Table 1 Dimensionality and examples for the different types of diagnostics supported by the monitoring tool.

3.3.2. Architecture

The software architecture consists of interfaces with external components as well as the internal

structure. Both of these will be outlined in this section, where the main focus lies on the internal

structure.

As explained in section 3.1, the monitoring tool shall not interfere with the EC-Earth model

run. For this reason, it is conceptually decoupled from every other EC-Earth component. To

create diagnostics, the tool needs model output and meta information about the model run. Thus,

the interface between tool and model is the output data (i.e., the run directory) and the runtime

environment of the current simulation. No other input source is provided since no external data is

necessary to monitor the simulation. The flow of information is one-way: The monitoring results

are influenced by the model’s computation but the monitoring tool does not affect the EC-Earth

components in any way. This supports the design principle of robustness significantly and is in

line with the programming task at hand. The monitoring tool presents the created diagnostics in a

suitable form. Such a presentation format could be, for example, a collection of saved diagnostics or

one document, source files for a web page, etc. They are then placed somewhere, at a presentation

outlet–this is the output of the monitoring tool. At the end of chapter 4, the already supported

presentation outlets will be discussed in more detail. An overview of the described I/O structure

can be seen in Figure 1.

Monitoring ToolEC-Earth
Model

Runtime
Environment

EC-Earth
Output Files

Presentation
Outlets

Figure 1 A schema visualizing the input and output of the monitoring tool. The flow of information is denoted by arrows.
Directories and files are displayed as ellipses, software components as rectangles. Since presentation outlets can be another piece of
software or file(s), no shape has been assigned.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 11

Now that the interaction with other components is clear, the internal structure of the monitoring tool

can be discussed. As it is based on the ScriptEngine framework, tasks are the main idea it builds

upon. The monitoring tool has a defined workflow: At the end of each leg, using EC-Earth output,

it creates relevant diagnostics. These diagnostics are then visualized in an expressive manner. Both

the selection of diagnostics as well as the desired visualization might vary between experiments

and are thus configurable by the user. The software consists of two different task types: Processing
tasks process input from the model output and the runtime environment. With this, they create

diagnostics and save them in files. Presentation tasks read these saved diagnostics and visualize

them. Then, they present all diagnostics at a presentation outlet. This separation of processing and

presentation allows for a very modular implementation: If the interface is well-defined, diagnostics

can be added and removed without changing anything about the presentation task. In the same

manner, the way diagnostics are presented can be modified without modifying the processing task

itself. With this approach, a user can easily customize their monitoring setup. For example, one

could decide to create diagnostics and save them on disk, without presenting them. Instead, they

can use their own preferred tools but still profit from the monitoring tool. Similarly, diagnostics

can be presented in multiple ways if desired. A schema of this separation can be seen in Figure 2.

Processing
Task

Presentation
TaskDiagnostic on Disk

Figure 2 A schema visualizing the separation of monitoring tasks. Arrows visualize the flow of information. Directories and files
are displayed as ellipses, software components as rectangles. Refer to Figure 1 for the outer structure.

3.3.3. The Structure of Processing Tasks

Processing tasks create diagnostics based on information from an EC-Earth component. These can

be OpenIFS or NEMO/SI3 output files or parameters stored in the runtime environment. Refer to

chapter 2 for more information on these components. To get from this input to a final diagnostic,

the task might apply some operations on spatial or temporal domains, e.g., an annual mean or a

global sum. The computation results in a quantity with dimensional properties that can be linked

to one of the diagnostic types in Table 1. Typically, the final diagnostic can be referred to by a

variable name: Either the processing task only deals with one variable or the variable results from

a user’s selection.

This structure can be formulated into a naming scheme for both processing tasks (the classes, their

containing modules, and YAML representations) and the file names of diagnostics on disk:

variable_component_{domain_op...}_diagnostictype

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 12

variable refers to the name of the resulting quantity, e.g., simulated years per day (SYPD) or sea

surface temperature (SST). The EC-Earth 4 component that provides the input data for a processing

task/diagnostic is abbreviated in component. This can be equal to, e.g., oifs (OpenIFS), nemo or

rte (runtime environment). domain_op pairs can be combined consecutively to describe the spatial

and temporal operations. The name finishes with the diagnostic type (cf. section 3.3.1).

This naming template is used as follows: The Python class uses the name in CamelCase notation

(capitalize to separate words). YAML representation, Python module, and diagnostic on disk use

the snake_case notation (lowercase, words separated by underscores). The YAML representation

of processing tasks also always starts with ece.mon., to separate the monitoring tasks from

ScriptEngine base tasks like context or find.

A simple example is the disk usage task: DiskusageRteScalar is the name of the processing

task. Here, diskusage is the variable name, rte signifies that the diagnostic results from runtime

environment information. The diagnostic type scalar is added at the end. The YAML representation

is ece.mon.diskusage_rte_scalar and the file name of the diagnostic on disk is diskusage_rte_-

scalar.yml.

These names get longer with physical performance tasks like NemoGlobalMeanYearMeanTime-

series: Here, NEMO output files are processed and a global and annual mean is applied to the

data, resulting in a time series diagnostic. The task is not limited to one variable, a user can select

one in the YAML script (the YAML representation of the task is ece.mon.nemo_global_mean_-

year_mean_timeseries). If a user chooses, e.g., tos (the NEMO variable name for the sea surface

temperature), the resulting diagnostic on disk can be called tos_nemo_global_mean_year_mean_-

timeseries.nc.

These processing tasks will be discussed in the next chapter in more detail. Categorizing and

naming tasks this way makes their functionality visible to users. It also helps developers to choose

names for new processing tasks.

3.3.4. Diagnostics on Disk

To achieve the structure in Figure 2, the interface between processing and presentation tasks has

to be very concise. For this reason, it was important to define clear criteria how a diagnostic can

be saved in a file. This representation of diagnostics is called diagnostic on disk. The file type,

structure, and requirements for diagnostics on disk are fundamentally important for a working

monitoring tool. In this section, their properties are therefore explained in detail.

Since the diagnostic on disk contains all the information for the presentation task, it must be

self-describing. The file therefore needs to contain some metadata next to the actual value(s) of the

quantity. The contents of a diagnostic on disk can be separated into three blocks:

• The actual data. Depending on the diagnostic type, this can be very simple or complex. For

scalar diagnostics, this will be a single number or piece of text. For the other diagnostic types,

this can be thought of as a multi-dimensional array. In the latter case, this will have to be

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 13

structured by coordinates and/or with labels.

• Metadata the user needs to interpret the quantity at hand. This includes the title or name of the

diagnostic, as well as a description or comment how it was obtained.

• Metadata that is necessary for the presentation task. Multi-dimensional data arrays will need to

be visualized in a very different way than a single number or some text. To account for these

fundamental differences, information regarding the desired visualization needs to be saved

alongside the data.

The file type of a diagnostic on disk should support this underlying structure. On the one hand,

diagnostic files should be simple enough to contain scalars and their metadata. But besides that,

there needs to be a way to save multi-dimensional data arrays in an expressive and compact format.

Furthermore, they should be easy to work with in the Python context. In climate and weather

prediction, NetCDF files are a well-established, expressive, and regularly updated format for

storing multi-dimensional, labeled data. This file type was therefore chosen for time series, maps,

and temporal maps. Since scalars are zero-dimensional in space and time, they are simpler to

handle than the other types: No coordinate labeling or boundaries and few metadata has to be

stored. For this reason, YAML files proved to be a suitable file representation.

In the Design Principles section, the advantage of standardized approaches for this tool was

illustrated. This principle becomes very apparent in the structure of diagnostics on disk. In fields

that depend on data analysis as much as climate science, unified data storage guidelines are nothing

new. For the sharing and processing of NetCDF files, the climate and forecast (CF) conventions

(Eaton et al., 2020) are a metadata standard in meteorology and climate science. They provide

guidelines for structuring coordinates, naming variables, assigning units, and much more. Since

EC-Earth output has been and will be used to participate in the Climate Model Intercomparison

Project, this is another source for conventions to save diagnostics. CMIP 6 data has to be in a

format conforming to the CMIP data request. This is a standard stricter and more limited than

the CF conventions. The CMIP data request introduces controlled vocabulary for more variable

metadata. Besides that, it prescribes the governing structure for CMIP 6 data: The CMIP data

request expects exactly one variable per NetCDF file. This was adopted for the diagnostics on disk

as well: A file written by a processing task contains one variable (i.e., data for one diagnostic).

The CF conventions and CMIP 6 data request are built around physical quantities. The controlled

vocabulary for variables and units does therefore not cover computational performance diagnostics

like the simulated years per day. Whenever possible, a diagnostic file fully conforms with CMIP 6

and CF requirements. But even when a diagnostic does not represent a physical quantity or if it is

not saved as a NetCDF file, it meets as much of the requirements as possible.

All diagnostics on disk (no matter if YAML or NetCDF file) contain the following information: one

variable/diagnostic per file, as prescribed by the CMIP Data Requirements; an attribute diagnostic

type; the two attributes title and comment, as suggested by the CF conventions. For NetCDF

diagnostics on disk, the attributes are stored as global attributes. In the YAML files, they are

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 14

stored as key-value pairs. title is mandatory and "a succinct description of what is in the dataset",

comment is optional and contains "miscellaneous information about the data or methods used to

produce it" (Eaton et al., 2020). The data in YAML files is stored under the key value. In NetCDF

files, the data is stored in variables and coordinates.

All NetCDF diagnostics on disk (i.e., saved time series, maps, and temporal maps) contain some

more information to make them compliant with the CF conventions. Processing tasks add an

attribute long_name to a variable, as the conventions and the NetCDF user’s guide (Unidata,

2020) recommend. This attribute is "a long descriptive name which may, for example, be used

for labeling plots" (Eaton et al., 2020). A variable also contains the attribute cell_methods. Cell

methods got introduced by the CF conventions and have the form name: method. They indicate

which operations were applied to the contained data, e.g., summation or mean over one or multiple

dimensions. The file also contains the global attribute source: As explained in the CF conventions

section 2.6.2, this refers to the "method of production of the original data. If it was model-generated,

source should name the model and its version, as specifically as could be useful." (Eaton et al.,

2020) This is then equal to EC-Earth 4. Finally, all NetCDF diagnostics on disk have a global

attribute Conventions with the value CF-1.8, to show the CF compliance of the dataset. For all

implemented processing and presentation tasks, the Python package Iris (Met Office, 2010b) is

used when working with NetCDF files, which ensures CF conformity.

If a diagnostic is a physical quantity that gets saved as a NetCDF file, it is even more standardized:

First of all, the variable has another attribute, the standard_name. This is a string from the

CF Standard Name Table to describe the variable’s physical properties (Eaton et al., 2020).

Furthermore, variable name, standard name, long name, and units adhere to the CMIP 6 data

request where possible. Time series and temporal maps have a dimensional time coordinate. It

must be monotonically increasing, as required by the CF conventions. Since time progresses

forward in EC-Earth simulations, time cannot decrease during the monitoring.

Next to the diagnostic type, NetCDF diagnostics on disk contain a custom attribute to control their

visualization: Maps and temporal maps on disk have the global attribute map_type. Depending on

the EC-Earth component, the diagnostic, and the dimensions (latitude-longitude maps, latitude-

pressure level maps,...) the desired visualization will differ significantly. For now, supported map

types are global ocean, global atmosphere, and polar ocean. But the list can be easily extended in

the future. This will be explained further in section 4.4.

To summarize: A set of ScriptEngine tasks is the basis for the monitoring tool. There are two sets

of tasks for the creation and visualization of diagnostics. Between processing and presentation,

diagnostics are saved as YAML or NetCDF files. This file is as close to established standards

as possible. They affect the structure but also the naming of variables and units. The tool can

be extended by creating new processing and presentation tasks. These must inherit from the

ScriptEngine Task class and use the structure of diagnostics on disk defined here. An overview of

the diagnostic on disk requirements was given. Diagnostics can be scalars, time series, maps, and

temporal maps–but if necessary, this list can be extended in the future.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 15

4. Implemented Monitoring Tasks

This chapter provides an overview of the implemented processing and presentation tasks, to demon-

strate the capabilities of the monitoring tool in its current state. Motivations and usage examples

are given for each task. For more complex tasks the assumptions, implemented procedures, and

limitations are explained in detail.

The chapter is structured in the following manner: It starts with the implemented processing tasks

(4.1-4.3) and ends with the presentation tasks (4.4). The processing tasks are separated not by their

diagnostic type (cf. section 3.3.1) but the EC-Earth 4 component they are linked to. In section 4.1,

an overview of computational performance tasks is given. These get their input from the EC-Earth

runtime environment. Section 4.2 contains all tasks that process NEMO and SI3 output, which

results in monitoring diagnostics for oceanic and sea ice variables. OpenIFS processing tasks are

summarized in section 4.3, they create relevant atmosphere diagnostics.

This structure allows to summarize assumptions about and challenges with the output generated by

the EC-Earth components. However, it does not reflect how the processing tasks are categorized in

the code. A more effective classification for this is the diagnostic type: As was explained in detail

in the Diagnostics on Disk section, the structure of the saved netCDF and YAML files depends on

the diagnostic type. The procedure for saving on disk is identical for all diagnostics of the same

type.1 For each of the four diagnostic types, a base class has been implemented: Scalar, Timeseries,

Map, Temporalmap. All processing tasks inherit from their respective base class. There is a very

important difference between the former and latter task classes: Map and Temporalmap are not

visible to the user, i.e., they can not be instantiated using a YAML script. Scalar and Timeseries

can be called directly from the YAML script. This is because there was a clear demand for a

generalized, user-customizable scalar and time series diagnostic, but not for generalized (temporal)

maps. Since this chapter illustrates the possibilities when using the monitoring tool, only the

first two tasks will be covered in detail in this thesis, in section 4.1. Presentation tasks can vary

a lot based on the presentation outlet. Thus, no generalized version of this task type has been

implemented. An overview of this implementation structure is shown in Figure 3.

Motivation for the implemented diagnostics and presentation tasks were not only group discussions,

but also existing tools with similar goals. These include the Earth System Model Evaluation Tool

(Eyring, Righi, et al., 2016), the monitoring tool Barakuda (Brodeau, 2017) for the ocean in

EC-Earth 3, and the post-processing tools for EC-Earth 3 (Le Sager et al., 2019).

4.1. Processing Tasks for Computational Performance

The processing tasks described in this section result in diagnostics which provide information

about the general model progress and computational performance. Such diagnostics usually show

1 Besides that, there are more properties and procedures that can be implemented on the level of the diagnostic type and
not each individual processing task. This includes checking file extensions and more.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 16

Scalar

run()
save()
...

Timeseries

run()
save()
...

Temporalmap

run()
save()
...

Markdown

run()
...

Map

run()
save()
...

Task

run()

...

DiskUsageRteScalar

run()
...

...
...

Processing Tasks Presentation Tasks

Figure 3 A class diagram showing the inheritance structure of the implemented monitoring tasks. While all implemented
presentation tasks inherit from the ScriptEngine Task directly, the processing tasks contain a two-layered substructure. The first
layer consists of generalized diagnostic type tasks. Tasks shaded in gray are implemented but not accessible to the user, while those
in yellow have YAML representations.

the value of a scalar quantity at one moment or over the time of a simulation. The implemented

processing tasks for computational performance are hence scalars or time series.

4.1.1. Scalar

This is the least complex processing task, and also the base class for all implemented scalar tasks.

For an experiment, a user might want to display some general, non-dimensional information: The

ID of the experiment (a four-digit code), a description why it was set up or when it was started.

The Scalar processing task enables this: A user can write custom output to a YAML file which

fulfills the diagnostic on disk requirements from section 3.3.4. The Scalar class is mapped to the

YAML representation ece.mon.scalar:

- ece.mon.scalar:

title: Some Scalar

value: value

comment: Optional description.

dst: ./ somescalar_scalar.yml

Scalar expects a title and data value for the diagnostic, as well as the path to a file with a valid

YAML extension (.yml or .yaml). This is where the diagnostic will be saved. Optionally, a user

can provide a description using the parameter comment. To save the experiment ID as a diagnostic

on disk, the task can be called like this:

- context:

exp_id: MON1

- ece.mon.scalar:

title: Experiment ID

value: "{{ exp_id }}"

dst: "./ expid_scalar.yml"

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 17

The contents of expid_scalar.yml are shown below.

title: Experiment ID

value: MON1

diagnostic_type: scalar

All other tasks for scalar diagnostics inherit from Scalar and reuse its save() method (cf. Figure 3).

4.1.2. DiskusageRteScalar

The scalar diagnostic resulting from this processing task informs the user how large a specified

folder is. Although this can be any directory, it is intended and particularly useful for the run

directory of the current simulation. Research proposals in climate science usually contain storage

estimates and requests for projects. The disk usage is thus a critical quantity for experiments. The

processing task DiskusageRteScalar computes the size of the directory at the provided path and

saves the diagnostic on disk, using the save() method of the Scalar task. The Python class is linked

to ece.mon.diskusage_rte_scalar for YAML parsing. A usage example can be seen below:

- ece.mon.diskusage_rte_scalar:

src: "{{ run_dir }}"

dst: ./ diskusage_rte_scalar.yml

4.1.3. SimulatedyearsRteScalar

The simulated years scalar diagnostic is a measure for the simulation progress. Climate simulations

in EC-Earth always have a start and end date, multiple years apart. A displayed number of

simulated years indicates the current state of the experiment. The processing task is called

SimulatedyearsRteScalar, it can be instantiated from the YAML script as ece.mon.simulatedyears_-

rte_scalar.

- ece.mon.simulatedyears_rte_scalar:

start: "{{ schedule.start }}"

end: "{{ schedule.leg.end}}"

dst: ./ simulatedyears_rte_scalar.yml

In the runtime environment of EC-Earth, the simulation start date is stored in the context, as well

as the end date of the current leg. The run() method of SimulatedyearsRteScalar gets these two

dates–they get parsed as Python datetime.datetime objects–and computes the difference in years.

As this is again a scalar diagnostic, it gets saved in a YAML file.

4.1.4. Timeseries

This processing task allows a user to create a custom time series diagnostic, illustrating the

progression of a scalar quantity over the duration of the current experiment. In its most simple

form, it can be called like this:

- ece.mon.timeseries:

title: Some Diagnostic

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 18

data_value: "{{ some_value }}"

coord_value: "{{ current_time }}"

dst: ./ somediagnostic_timeseries.nc

In this example, only the required parameters are given. To save the diagnostic on disk, the task

requires a title, a new value for the time coordinate and the data array, and a destination for the

diagnostic on disk. It either creates a new NetCDF file or appends new values to the existing one.

The key assumption for a time series diagnostic is that the coordinate values are monotonically

increasing (cf. 3.3.4). Besides that, a user can freely choose their input. The script and diagnostic

can be customized further using the optional parameters:

- ece.mon.timeseries:

title: An Interesting Title

data_value: "{{ some_value }}"

coord_value: "{{ current_time_in_seconds }}"

comment: Diagnostic Description.

coord_name: x-axis label

coord_units: s

data_name: y-axis label

data_units: m

dst: ./ somediagnostic_timeseries.nc

When these are not given, the task assumes values: The comment does not get set, the names of

the coordinate and data variable are set to "time" and the value of title, respectively. The units are

set to "1" if a user does not provide any.

While the task is very generic, it allows for two specific diagnostics that are very relevant for the

computational performance: Using information from the context, a user can create time series

for the simulated years per day (SYPD) or the core hours per simulated year (CHSY). These

diagnostics are common in climate science (Balaji et al., 2017) and do not require more specific

task implementations. For example, an SYPD time series can be created like this:

- ece.mon.timeseries:

title: Simulated Years per Day

coord_value: "{{ leg_num }}"

coord_name: Year

comment: SYPD development during this simulation.

data_value: "{{((schedule.leg.end - schedule.leg.start)/

script_elapsed_time /365) }}"

dst: ./ sypd_timeseries.nc

To ensure CF compliance of the diagnostic on disk, the task uses the Python package Iris (Met

Office, 2010b) when saving the diagnostic. Since computational performance diagnostics are not

covered by the CMIP data request, diagnostics on disk created by Timeseries do not adhere to

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 19

these standards. The algorithm for saving this generic time series on disk is reused by all other

tasks with the same diagnostic type.

4.2. Processing Tasks for NEMO and SI3

For these processing tasks, certain assumptions were made about the input data. If they are not met,

the resulting diagnostics will either not be created or they might not show the expected results.

All processing tasks for ocean and sea ice assume that the input data are output files from NEMO or

SI3, i.e., NetCDF files on a global curvilinear grid. Currently, only 2D variables can be treated–this

will be improved on in future releases. Furthermore, it is assumed that data for land cells is

flagged as invalid. The task NemoMonthMeanTemporalmap in section 4.2.3 as well as the sea ice

processing tasks (4.2.4 and 4.2.5) will fail if the output frequency is not monthly (e.g., daily or

annual output). As explained in chapter 2, this is the typical frequency for NEMO output and thus

not considered problematic. Finally, a leg length of one year is expected. Longer or shorter lengths

will not lead to failure but some of the file descriptions might be inaccurate (e.g., the comment

attribute might say "annual mean" despite being a half-year mean).

In all processing tasks, the Iris package (Met Office, 2010b) is used to open and modify the

NetCDF files. Loading and saving NetCDF files with Iris ensures CF compliance. Variable names,

metadata, and units are changed in the tasks to meet some of the CMIP data request standards.

4.2.1. NemoGlobalMeanYearMeanTimeseries

The sea surface is the interface between ocean and atmosphere. Climatic changes are thus reflected

in sea surface variables such as the sea surface temperature (SST), sea surface salinity, sea surface

height, etc. Temporal developments of these and other 2D quantities are very common ocean

diagnostics.

By taking a global (i.e., spatial) and annual mean, this processing task creates time series diagnostics

that emphasize large-scale trends on Earth. The task can produce such diagnostics for various 2D

ocean quantities and inherits from the generic Timeseries task. In the future, it can be extended to

support 3D variables, such as the oceanic heat content, as well.

The Python class is mapped to the YAML representation ece.mon.nemo_global_mean_year_-

mean_timeseries. A usage example can be seen beneath this paragraph, where "tos" is the NEMO

variable name for the SST.

- ece.mon.nemo_global_mean_year_mean_timeseries:

src: "{{ t_files }}"

varname: tos

domain: "{{ rundir }}/ domain_cfg.nc"

grid: T

dst: ./ tos_nemo_global_mean_year_mean_timeseries.nc

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 20

The task extracts the variable varname from the list of NEMO output files in src. Using the domain

configuration file in domain, it computes the area-weighted mean. The optional parameter grid

can be equal to T, U, V, and W. It specifies which of the four NEMO grids should be used for

the weighted mean. If no value is given for grid, the task assumes to use the T grid for scalar

quantities. It also averages over the time span from the first to the last input file (e.g., one year if

all files of a year-long leg are provided). Month lengths are taken into account for the temporal

mean. The diagnostic gets saved at dst. The structure of the corresponding NetCDF file can be

seen in Figure 4.

4.2.2. NemoAllMeanMap

When monitoring a simulation, it is helpful to see the spatial distribution of ocean surface variables

and not only the global average. This shows if the model reproduces regional phenomena. The

use of such diagnostics can be seen in, e.g., Figure 3 of Sterl et al., 2012 and Figure 2.2 of IPCC,

2014. The processing task NemoAllMeanMap creates a map containing the mean of an ocean

surface variable over the so-far simulated, "all", time. This processing task is mapped to the YAML

representation ece.mon.nemo_all_mean_map:

- ece.mon.nemo_all_mean_map:

src: "{{ t_files }}"

varname: tos

dst: ./ tos_nemo_all_mean_map.nc

The task extracts the variable varname from the list of NEMO output files in src, in this case

the SST. It averages over the time span from the first to the last input file (e.g., one year if all

files of a year-long leg are provided). Month lengths are taken into account for this first temporal

mean. After the first leg, this map gets saved at dst. If the file already exists, the processing task

computes the weighted temporal mean of the existing map and the newly created leg average. This

simulation average is then saved at dst again.

To illustrate this further, here is a more concrete example: For a simulation over three years, with

yearly legs, the processing task would first compute the average of the first year. Since one year

of simulated time has passed, this is the same as the current simulation average. The task then

saves this diagnostic at dst. After the second leg, it computes the time mean of the second year.

Then, it aggregates the two yearly averages into one, two years long simulation average. The same

procedure repeats for the third year. As the saved simulation average now covers two years, it

will have twice the weight as the new annual mean when aggregating the averages. This saving

procedure is implemented in the save() method of the generic Map task (cf. Figure 3).

As was mentioned in section 3.3.4, maps and temporal maps contain the global attribute map_type

for visualization. This is set to global ocean for this processing task and the next one.

4.2.3. NemoTimeMeanTemporalmap

Temporal map diagnostics allow a user to see developments during a simulation as well as spatial

patterns. They combine time series with map diagnostics. This processing task computes either the

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 21

netcdf tos_nemo_global_mean_year_mean_timeseries {

dimensions:

time_counter = 25 ;

bnds = 2 ;

variables:

double tos(time_counter) ;

tos:standard_name = "sea_surface_temperature" ;

tos:long_name = "sea surface temperature" ;

tos:units = "degC" ;

tos:cell_methods = "time_counter: mean

(interval: 1 month)

area: mean" ;

tos:coordinates = "nav_lat nav_lon" ;

double time_counter(time_counter) ;

time_counter:axis = "T" ;

time_counter:bounds = "time_counter_bnds" ;

time_counter:units = "seconds since 1900 -01 -01

00:00:00" ;

time_counter:standard_name = "time" ;

time_counter:long_name = "Time axis" ;

...

double time_counter_bnds(time_counter , bnds) ;

...

// global attributes:

:comment = "Global average time series of **tos**.

Each data point represents the (spatial and temporal)

average over one leg." ;

:source = "EC-Earth 4" ;

:title = "sea surface temperature (Annual Mean)" ;

:type = "time series" ;

:Conventions = "CF -1.8" ;

}

Figure 4 Example excerpt of a ncdump -h call on an SST time series diagnostic. As was laid out in section 3.3.4, the diagnostic on
disk contains one variable only, tos. The time coordinate time_counter has continuous bounds time_counter_bnds. Clearly visible
are the global and variable attributes. They are in accordance with the CF conventions.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 22

annual (if a leg is one year long) or monthly development of ocean surface variables. The former

works analogously to the time series in section 4.2.1, without taking the spatial mean. The latter

requires almost no data manipulation: As the input is assumed to be a list of monthly files, the

data is appended and stored in one file instead of twelve. These two variants are implemented as

two tasks, NemoYearMeanTemporalmap and NemoMonthMeanTemporalmap. Both inherit from

NemoTimeMeanTemporalmap, which bundles some of their functionality but cannot be called by

a user. They are mapped to ece.mon.nemo_year/month_mean_temporalmap:

- ece.mon.nemo_month_mean_temporalmap:

src: "{{ t_files }}"

varname: tos

dst: ./ tos_nemo_month_mean_temporalmap.nc

- ece.mon.nemo_year_mean_temporalmap:

src: "{{ t_files }}"

varname: tos

dst: ./ tos_nemo_year_mean_temporalmap.nc

The processing task opens the input files at src, specifically only the data of the variable varname.

Depending on the task, a leg mean is either created or not. If a file already exists at dst, the

processing task appends to the existing diagnostic. NemoTimeMeanTemporalmap inherits from

the generic Temporalmap task and reuses its save() method (see Figure 3).

4.2.4. Si3HemisSumMonthMeanTimeseries

"As an interface between ocean and atmosphere, sea ice controls most of the heat, momentum

and fresh water transfers in sea ice covered regions" (Sterl et al., 2012). It is thus an important

component of the climate and relevant to monitor. Changes in Earth’s sea ice content are driven

by seasonal variability on the hemispheres. EC-Earth 4 should reproduce this. The processing

task Si3HemisSumMonthMeanTimeseries allows to create time series for the hemispheric sea ice

volume and area with an emphasis on their seasonal cycle.

Conceptually, it differs from the NemoGlobalMeanYearMeanTimeseries. Since sea ice volume and

area are extensive quantities, their mean is less informative than the accumulated value. Instead of

a spatial mean, a sum over latitude and longitude is thus necessary. The variables in NEMO and

SI3 are always stored as "per grid cell area", which is why the sum (and spatial mean) need to be

area-weighted. The interesting ocean quantities, such as the SST, are intensive quantities. Hence,

multiplying or dividing by area does not lead to changes in unit or physical meaning. But dividing

sea ice volume and area by grid cell area leads to a different variable:

[m3]

[m2]
= [m],

[m2]

[m2]
= [1].

Sea ice volume per area becomes the mean sea ice thickness in a grid cell. Sea ice area per grid

cell area is referred to as the sea ice concentration. When computing the desired sea ice diagnostics

from NEMO output and multiplying with the grid cell areas, the units and standard names therefore

need to be adjusted.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 23

Instead of a global operation, the hemispheres are separated during computation, splitting Arctic

from Antarctic sea ice. This is motivated by the fact that seasons on the northern hemisphere are

opposite to those in the southern hemisphere. Global instead of hemispheric sums would partially

hide the seasonal variability. An annual mean as in the NemoGlobalMeanYearMeanTimeseries is

also not logical here. To highlight the seasonal cycle, a different operation is necessary. Possible

options include: a mean over seasons; a semi-annual mean; monthly developments; the maximum

and minimum total sea ice volume or area. Typical in the literature is an analysis of maximum

and minimum values. Instead of computing these values manually, the March and September

means are usually displayed (e.g., Sterl et al., 2012) since these months represent the end of the

hemispheric summer or winter. It is visible from observational data (cf. NSIDC, 2020) that the

Antarctic minimum occurs a bit earlier than the Arctic maximum. Hence, another possible choice

is to use the February and September means for the Antarctic and March (or a later month) and

September for the Arctic. Although it would have been conceptually easier to use maximum and

minimum values2, this processing task sticks to the more established diagnostic. A user can simply

provide a selection of monthly means that best represents the development they want to see.

The Python class is mapped to ece.mon.si3_hemis_sum_month_mean_timeseries:

- ece.mon.si3_hemis_sum_month_mean_timeseries:

src:

- "{{ mar_file }}"

- "{{ sep_file }}"

domain: "{{ rundir }}/ domain_cfg.nc"

varname: sivolu

hemisphere: north

dst: ./ sivol_si3_north_sum_mar+sep_mean_timeseries.nc

The task extracts the variable varname from the file(s) in src. Using the domain configuration file

in domain, it computes the area-weighted sum over the hemisphere specified by the user. Metadata,

units, and variable names get changed as explained above. The diagnostic is saved at dst, using the

save() method from Timeseries.

4.2.5. Si3HemisPointMonthMeanAllMeanMap

Similarly to ocean variables, the spatial distribution of maximum and minimum sea ice thickness

(in this case, volume per area) and sea ice concentration are established and helpful diagnostics.

The processing task Si3HemisPointMonthMeanAllMeanMap can create a simulation average of a

sea ice variable in one month and on one hemisphere, for example: a simulation average of the

sea ice concentration in February on the southern hemisphere. The task separates the hemispheres

again since Arctic and Antarctic sea ice have opposing seasonal cycles. Besides this, the model

user is only interested in the grid cells with sea ice content. This processing task thus masks all

cells that are either on the other hemisphere or have the value 0. When displaying sea ice maps,

only a part of the globe is shown usually to focus on the regional phenomenon (e.g., Figure 12 in

2 Iris directly supports operations such as taking a minimum, maximum, mean or sum, so this would not have been
difficult to implement.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 24

Sterl et al., 2012 or Figure 4.14 in Vaughan et al., 2013). Although the underlying grid is the same,

a presentation task will have to treat sea ice maps differently from global ocean maps. Thus, this

processing task has the map type polar ice sheet.

Si3HemisPointMonthMeanAllMeanMap is mapped to the YAML representation ece.mon.si3_-

hemis_point_month_mean_all_mean_map. A usage example can be seen below.

- ece.mon.si3_hemis_point_month_mean_all_mean_map:

src: "{{ ice_file_sep }}"

varname: sivolu

hemisphere: south

dst: ./ sivolu_si3_north_point_sep_mean_map.nc

The task loads the data for the variable varname from the provided input file in src. This allows

the user to decide which month they want to resemble the maximum/minimum sea ice content,

as in the other SI3 processing task. A simulation average is computed and saved at dst. See the

explanation in section 4.2.2 for more details.

4.2.6. Si3HemisPointMonthMeanTemporalmap

This processing task is almost equivalent to the map task in the last section. But as opposed

averaging over the month means, Si3HemisPointMonthMeanTemporalmap appends them. This

results in a temporal map diagnostic on disk, showing the annual development of a sea ice variable

on one hemisphere, for example: the sea ice concentration in February on the southern hemisphere

in the years 1990 until 2000. The map type is polar ice sheet and the YAML representation is

ece.mon.si3_hemis_point_month_mean_temporalmap.

- ece.mon.si3_hemis_point_month_mean_temporalmap:

src: "{{ ice_file_sep }}"

varname: siconc

hemisphere: south

dst: ./ siconc_si3_south_point_mar_mean_temporalmap.nc

The required parameters are the same as in section 4.2.5. Joining the monthly data can be compared

to the procedure in the task NemoTimeMeanTemporalmap.

4.3. Processing Tasks for OpenIFS

The OpenIFS tasks process 2D variables in grid-point space, saved in GRIB files. Some more

assumptions were made about the input data for these tasks. Again: If they are not met, the

resulting diagnostics will either not be created or they might not show the expected results.

An important assumption concerns the output frequency of OpenIFS: All tasks assume a constant

output frequency of the atmosphere model. In particular, monthly output is not considered constant

since month lengths differ throughout a year. The processing tasks compute time bounds based on

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 25

the input and use the first time interval for this calculation. Additionally, temporal means do not get

weighted in these tasks (as opposed to the NEMO/SI3 tasks in section 4.2). As mentioned in chapter

2, diurnal or higher output frequencies are typical for the atmosphere. Thus, this requirement is

fulfilled in almost all experiment setups. Finally, a leg length of one year is again expected. Longer

or shorter lengths will not lead to failure but some of the file descriptions might be inaccurate,

as with the ocean and sea ice diagnostics (e.g., the comment attribute might say "annual mean"

despite being a half-year mean).

If the Python package iris-grib (Met Office, 2010a) is installed alongside Iris, GRIB files can be

loaded into Iris cubes. They can then be modified and saved as CF compliant NetCDF files. When

loading the files, Iris replaces the GRIB codes with names from the CF Standard Name Table,

this mapping is stored in iris-grib. Since the package did not recognize all variables from the

OpenIFS output by default, the monitoring tool extends it with custom keys relevant for atmosphere

monitoring. As for the ocean diagnostics, variable names, metadata, and units are changed in the

processing tasks to meet some of the CMIP data request standards.

The physical space in OpenIFS is discretized using a reduced Gaussian grid, as was explained in

chapter 2. To keep the resolution more uniform, the amount of cells per latitude ring decreases

towards the poles in this type of grid (Malardel et al., 2016). Reduced Gaussian grids are not

directly supported by Iris: Latitude, longitude, and data points are all loaded as separate one-

dimensional arrays. Typical operations such as area-weighted means had to be implemented

manually. A standard way of handling reduced Gaussian grids would be to apply a regridding

procedure, either manually or using tools like the Climate Data Operators suite (Schulzweida,

2019). This makes data operations and visualization a lot easier and similar. However, it would alter

the output data significantly. Additionally, choosing an interpolation method is variable-dependent

and not trivial (Shea, 2014). Monitoring an experiment should show the current model status in a

form close to the saved output. Thus, the OpenIFS output does not get regridded by the processing

tasks.3

4.3.1. OifsGlobalMeanYearMeanTimeseries

This processing task is the atmospheric equivalent of the NemoGlobalMeanYearMeanTimeseries

for the ocean. It enables EC-Earth users to monitor the global annual mean of a 2D atmosphere

variable, for example the two meter air temperature or humidity. These are then time series

diagnostics, produced by the processing task OifsGlobalMeanYearMeanTimeseries. It is mapped

to the YAML representation ece.mon.oifs_global_mean_year_mean_timeseries:

- ece.mon.oifs_global_mean_year_mean_timeseries:

src: "{{ gg_files }}"

grib_code: 167

dst: ./167 _oifs_global_mean_year_mean_timeseries.nc

The task extracts the data for GRIB code grib_code from the list of GRIB files in src. 167

3 For the same reasons, the presentation tasks visualize atmosphere diagnostics without interpolating to a regular 2D
mesh.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 26

(parameter name: 2t) is the ECMWF GRIB code for the two meter air temperature. The code

is mapped to a CF compliant variable and the metadata gets changed accordingly. Before the

contained data is modified, time bounds are added to the time coordinate. Since GRIB files do

not contain this information, they are computed based on the difference between the first two

time values. As mentioned before, this is possible since a constant OpenIFS output frequency

is assumed. The temporal mean (spanning from the earliest until the last input file) is computed

without weights for the same reason. The task takes a spatial mean using a manually implemented

area-weighted mean.4 If the input files do not span one year, the result will be the mean over

the time spanned by the files. It is assumed that this is equivalent to one year. The task will still

create a valid diagnostic on disk if this is not the case, but the metadata will be less accurate. The

diagnostic gets saved at dst using the save() method from the Timeseries processing task.

4.3.2. OifsAllMeanMap and OifsYearMeanTemporalmap

The processing tasks OifsAllMeanMap and OifsYearMeanTemporalmap are the OpenIFS equiva-

lents of the tasks described in 4.2.2 and 4.2.3. They are mapped to ece.mon.oifs_all_mean_map

and ece.mon.oifs_year_mean_temporalmap, respectively.

- ece.mon.oifs_all_mean_map:

src: "{{ gg_files }}"

grib_code: 167

dst: ./167 oifs_all_mean_map.nc

- ece.mon.oifs_year_mean_temporalmap:

src: "{{ gg_files }}"

grib_code: 167

dst: ./167 _oifs_year_mean_temporalmap.nc

OifsAllMeanMap saves a simulation average map of the parameter grib_code, created from the

files at src. OifsYearMeanTemporalmap saves a temporal map of the annual/leg (or monthly) mean.

The saving procedure is the same as for the ocean and sea ice diagnostics of the respective type.

An important difference is the map_type attribute: The map type of the created diagnostics is

global atmosphere, since the reduced Gaussian grid cannot be visualized in the same way as the

curvilinear NEMO grid. The metadata is again adapted to make the files CF and partly CMIP data

request compliant. The diagnostics are saved at dst.

4.4. Presentation Tasks

The diagnostics on disk are visualized and presented using the tasks described in this section.

Currently, two presentation tasks are implemented. Naming presentation tasks is not as standardized

as for processing tasks (cf. section 3.3.3). The task/class/module name should be the presentation

outlet, for example Markdown. Their YAML representation is preceded by ece.mon.presentation

to make them distinguishable from processing tasks.

4 The reduced Gaussian grid has equally spaced grid cells along one latitude ring. The area weights can thus be
computed by calculating the area of this latitude ring and dividing by the amount of grid cells in it.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 27

4.4.1. Markdown

The Markdown presentation task visualizes all input diagnostics on disk and creates a markdown

document containing text, images, and GIFs. It can be instantiated using ece.mon.presentation.mark-

down in a YAML script. To illustrate what it does, a usage example is given:

- ece.mon.presentation.markdown:

src:

- ./ expid_scalar.yml

- ./ description_scalar.yml

- ./ simulatedyears_rte_scalar.yml

...

- ./2 t_oifs_all_mean_map.nc

template: "{{ rundir }}/ markdown_template.md.j2"

dst: ./ markdown

Diagnostic Type Presentation Type

scalar text

time series image

map image

temporal map image

Table 2 A table showing the presentation types that
the Markdown task assigns to diagnostics based on
their type.

The task iterates over all paths contained in src. For

each file, it first determines the diagnostic type. Based

on this, a sequence of visualization steps is initiated.

While scalar diagnostics are best presented as plain

text, time series and (temporal) maps should be pre-

sented as images. This assignment is shown in Table

2. At the end of these steps, a Python dictionary called

presentation object is created for each diagnostic on

disk. It contains keys title, presentation_type, data (for

text) or path (for media), and optionally comment. The

presentation objects and the Markdown template file

template are parsed using the Jinja2 template engine.5

This results in a markdown file summary.md at dst. The

monitoring tool provides an exemplary template but a user can customize it or create their own

without changing the implemented presentation task.

For scalar diagnostics, the visualization steps are straightforward: The YAML file is loaded using

the PyYAML library. The structure of a scalar diagnostic on disk already resembles a dictionary

close to the structure required by the template (cf. the exemplary YAML file in 4.1.1). Therefore,

only the key presentation_type has to be added with the value text.

Time series diagnostics are best visualized by plotting the values on a graph. The task calls a routine

that creates such a plot. A plot title, axes, and units are added (as can be seen in Figure 6). This

is then saved as a PNG file in the dst directory. Then, the Python dictionary for the presentation

is created: title and comment are equal to the global attributes as saved in the NetCDF file (see

section 3.3.4 or Figure 4). pres_type is equal to image and path contains the relative path to the

5 Jinja2 processes input with a Python-like syntax to create custom output files. Since ScriptEngine uses Jinja2
templating in various places, it was consistent to use it here instead of other libraries. More information on Jinja can
be found at https://jinja.palletsprojects.com.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 28

(a) The sea ice volume per area averaged
over three years. The diagnostic was
created with the task from section 4.2.5.

(b) A visualization of the SST simulation
average, created with the
NemoAllMeanMap processing task.

(c) A visualization of the two-meter air
temperature simulation average, created
with the processing task from section 4.3.2.

Figure 5 These three plots illustrate the plotting routines for different map types as they are used in the Markdown presentation task.
They are visualizations of all_mean_map diagnostics for the sea ice, ocean and atmosphere.

PNG file.

Maps and temporal maps are visualized with two-dimensional plots. For temporal maps, multiple

of these are created and saved as GIFs. Maps are saved as PNG files. Based on the diagnostic type,

a different creation and saving routine is called, leading to different file extensions in the path key.

The title and comment values are equivalent to the global attributes in the diagnostics on disk. Both

diagnostic types have another property in common: The map type attribute. The relevance of it is

discussed in the next paragraph.

The map type attributes in (time) map diagnostics on disk determine how the presentation task

visualizes it. This is independent of the final file type (e.g., PNG, GIF, MP4) and the presentation

type (image or video). Instead, it affects how the plots themselves are created. Three different

map types are currently implemented in the monitoring tool: global ocean, global atmosphere,

and polar ocean. Figure 5 illustrates the relevant differences between these types. The general

design of the plots does not differ: color bar, title, and subtitle design are the same. Figure 5a and

5b both use the visualization technique for the tripolar ORCA grid as it is recommended in the

Iris user guide6. They differ in the chosen map projection: 5a uses an orthographic projection for

less polar distortion. 5b uses the PlateCarree map projection to give a global view. Figure 5c uses

the same map projection but a different plotting routine: Since OpenIFS output is defined on a

reduced Gaussian grid, the data is stored in a 1D array (cf. section 4.3). Because of this different

format, the standard 2D plotting procedure pcolormesh() can not be used directly. The currently

used alternative creates a colored scatter plot, with dots at every point of the reduced Gaussian

grid.

Users can also define some custom visualization options for individual diagnostics. Currently, the

feature allows different colormaps for the (temporal) maps and a value range for all types of plots.7

To use this functionality, the syntax in the src key is a bit different:

6 https://scitools.org.uk/iris/docs/v2.2/examples/General/orca_projection.html
7 The possible colormaps are listed in the Matplotlib documentation: https://matplotlib.org/3.1.0/tutorials/colors/

colormaps.html.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 29

src:

- ./ expid_scalar.yml

...

- path: ./ tos_year_mean_temporalmap.nc

value_range: [-2, 30]

colormap: viridis

...

The created dictionaries are finally passed to the template engine. Based on the presentation type,

a different syntax is selected to embed the image, video, or piece of text in the Markdown report.

An excerpt of such a file is shown in Figure 6.

Figure 6 An excerpt of a file created by the Markdown presentation task. It contains both a text and an image. Formatting
differences can be clearly seen: While the value of title of the scalar diagnostics is printed in bold text, it is printed as a heading for
the time series.

4.4.2. Redmine

While the Markdown report already supplies a solution for a structured visual presentation of

monitoring diagnostics, it requires the user to connect to the supercomputer and retrieve the file

manually. There is a demand for a more automated process: the diagnostics should get visualized

and then automatically put on the web, with updates every time they are updated.

EC-Earth users and developers use Redmine–a project management web application–to track

issues and the model development progress. The Redmine presentation task visualizes monitoring

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 30

diagnostics and uploads the visualization to the EC-Earth development portal as a new issue. This

issue gets updated over time and allows users to directly view monitoring results on the web, while

being able to discuss problems or ideas in-place.

In general, the task functions similarly to the Markdown task:

- ece.mon.presentation.redmine:

src:

- ./ expid_scalar.yml

- ./ description_scalar.yml

- ./ simulatedyears_rte_scalar.yml

...

- ./2 t_oifs_all_mean_map.nc

template: "{{ rundir }}/ redmine -template.txt.j2"

subject: Issue Title

api_key: "{{ api_key }}"

local_dst: ./ redmine

First, the task creates visualizations and presentation objects of the input files in src, as described

for the Markdown task. The images and GIFs are saved locally at local_dst. The presentation

objects are then inserted into a document template, provided by template. Again, a user can modify

this template to their liking, although the monitoring tool provides a suggested structure. This

template uses the Redmine Wiki syntax, which is similar to Markdown, to create a formatted issue

description. Using the api_key to log in, the task creates or updates an issue on the development

portal, with the subject provided by the user. It uploads all necessary attachments and the

description, providing live updates about the monitored experiment.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 31

5. Exemplary Monitoring Results

In these early stages of EC-Earth 4 development, the model is tested in the

simpler general circulation model (GCM) configuration, as opposed to a

fully coupled Earth system model. During the development of the monitor-

ing tasks, the coupling with the sea ice component SI3 has started and some

early tests suggested considerable problems in the physical performance.

This proved to be a good testing ground for the new monitoring tool. A 25

year-long monitored simulation was set up, with OpenIFS, NEMO and SI3

activated. The test was performed on Tetralith, a high-performance comput-

ing cluster that is frequently used for large EC-Earth experiments. Tetralith

is operated by the National Supercomputing Centre in Sweden (NSC) and

incorporates 1908 computing nodes. (NSC, 2020) For this experiment 14

nodes, with 32 CPU cores each, were used, resulting in 448 cores.

To get a full overview of the monitoring tool’s performance, almost all

processing tasks were used. A selection of diagnostics was presented in real-

time on the EC-Earth development portal with the Redmine task. Figure 7

contains an excerpt of the corresponding page. After the experiment a

Markdown summary was created for each component, presenting all of the

diagnostics.

In this chapter, an overview of the monitoring results from this exemplary

EC-Earth 4 simulation is given. Section 5.1 discusses some conclusions

about the experiment which can be drawn from the monitoring diagnos-

tics. The computational performance of the monitoring tasks themselves is

analyzed in section 5.2.

5.1. Performance Results of EC-Earth 4

Figure 7 Screenshot
from the EC-Earth
development portal.

This section will examine three illustrative monitoring results from this EC-Earth 4 experiment.

The full Markdown summaries, as well as the YAML script which produced these diagnostics, are

available on GitHub as additional resources for this thesis: https://github.com/valentinaschueller/

ece-4-monitoring-resources.

The simulated years per day development was computed and visualized using the Timeseries

processing task, the plot can be seen in Figure 8. In general, the speed of EC-Earth 4 looks

promising. Typical major experiments like the CMIP 6 historical simulations span around 150

years. (Eyring, Bony, et al., 2016) An average of 22.7 SYPD, as measured here, means that these

could be completed in about one week of computation time. The result also shows a decrease

in model speed over time. While EC-Earth 4 took about 58 minutes for the first leg, the last

one needed almost 67 minutes–a 14% increase. Past tests of EC-Earth 4 already indicated that

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 32

the model gets slower over time. The monitoring tool can track the speed automatically and in

real-time. When developing solutions for this issue, the Timeseries task can thus be used to check

if code changes affect the computational performance.

Figure 8 The SYPD development over the duration of the experiment. A decrease in this number indicates that EC-Earth 4 slows
down over time.

As was mentioned in the beginning of this chapter, EC-Earth 4 is currently not producing a realistic

amount of sea ice. This can have various reasons and it is not the goal of this thesis to solve the

underlying problem. Since the implemented tasks cover SI3 output, this phenomenon should be

visible in the monitored sea ice variables as well. The task Si3HemisSumMonthMeanTimeseries

was used to create time series for the seasonal variability in sea ice area on the northern and

southern hemisphere. The final plots can be seen in Figure 9.

"Sea ice typically covers about 14 to 16 million square kilometers in late winter in the Arctic and

17 to 20 million square kilometers in the Antarctic Southern Ocean." (NSIDC, 2019) The time

series plots in Figure 9a and 9b show that the sea ice in EC-Earth 4 stays well below these numbers,

especially on the southern hemisphere. Sea ice also almost vanishes at the end of summer on

both hemispheres, which does not fit observed values (cf. NSIDC, 2020). EC-Earth 4 users can

activate the necessary monitoring tasks to automatically get these results at runtime and thus detect

problems in the physical performance.

A more detailed view of sea ice development in this experiment can be seen in the additional

resources on GitHub. The GIFs of temporal maps visualize the regional differences in sea ice over

time.

Exemplary parameters to influence the sea ice development are the scale factors for the sea ice

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 33

albedo mapping1: SI3 sends one value for the sea ice albedo over all wavelengths to the atmosphere

model, via the coupler. This value is mapped to six spectral intervals as required by OpenIFS using

scale factors. To confirm the significance of this mapping, a short test experiment with higher scale

factors was set up as well. In Figure 9c and 9d, the results can be seen. The effect of changing the

scale factors is especially prominent on the northern hemisphere. As with the SYPD time series,

the monitoring tool can be used in this example to see how adjustments in the setup change model

results.

(a) The total area of arctic sea ice in March and September. The
two months resemble the end of winter and summer on the
northern hemisphere.

(b) The antarctic sea ice area in February and September,
commonly used as the minimum and maximum values on the
southern hemisphere.

(c) Arctic sea ice area development in a shorter test experiment
with higher scale factors for the sea ice albedo mapping.

(d) Antarctic sea ice area development in a test experiment with
higher scale factors for the sea ice albedo mapping.

Figure 9 These four plots show the development of the sea ice area on the northern and southern hemisphere. (a) and (b) display
results from the test experiment. Higher scale factors for the sea ice albedo mapping led to the plots in (c) and (d).

The implemented map processing tasks can indicate if EC-Earth reproduces regional phenomena.

One example for this is the mean dynamic (ocean) topography: the time-averaged sea surface

minus the geoid ("the level surface that corresponds to the surface of an ocean at rest", Stewart,

2008). It is formed by the large ocean currents which are left when taking multi-year means of the

sea surface. The associated variable to obtain the mean dynamic topography from NEMO output

is the SSH. A comparison of EC-Earth 4 results and observational data can be seen in Figure 10. It

shows that NEMO reproduces the regional differences inherent to the mean dynamic topography:

SSH slopes in the different oceanic basins are clearly visible and the value range is similar to

observations. The task NemoAllMeanMap creates diagnostics to confirm such properties quickly.

1 Albedo is "the ratio of incident to reflected sunlight" (Stewart, 2008), a measure for the diffuse reflection of solar
radiation.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 34

(a) (b)

Figure 10 These two plots compare the 25-year mean of the SSH as computed by EC-Earth 4 (a) with the mean dynamic ocean
topography as computed using observational data from the European Space Agency’s GOCE satellite (b). Figure (b) was obtained
from ESA, 2014, Copyright: ESA/CNES/CLS.

In general, the monitoring tasks enable users to see various properties of an EC-Earth simulation:

OpenIFS, NEMO, SI3, and even computational performance diagnostics can be created at runtime

and allow to get a first idea of an experiment’s characteristics. Serious problems in physical

performance can thus be spotted during an experiment. A user can then decide to interrupt the

EC-Earth simulation and enter a new testing cycle, saving computational resources.

The currently implemented tasks cover a broad range of variables but only a limited number of

typical climate model diagnostics. For example, common atmosphere measures like the surface

precipitation minus evaporation can not be computed yet, as with means of 3D oceanic variables.

These missing diagnostics are discussed in more detail in the final chapter.

5.2. Computational Performance of the Monitoring Tasks

ScriptEngine can measure the time that individual Task instances take to complete. This feature was

activated during the test simulation. It makes an analysis of the monitoring tool’s computational

performance possible. Table 3 shows the time per monitoring task for one exemplary leg. The task

OifsYearMeanTemporalmap was not used to monitor this experiment, therefore it is missing in the

list–in other tests, it took about as long as OifsAllMeanMap. The last line, the ScriptEngine task

Command, signifies the amount of time needed for the model computation.

In the YAML script used for monitoring the EC-Earth experiment, more ScriptEngine tasks than

the ones presented in chapter 4 were used. For example, output files are collected using the Find

task and directories are created using the MakeDir task. The purpose of this section is the analysis

of the newly developed tasks in comparison to an average EC-Earth leg. Other instantiated tasks

were therefore left away.

In the exemplary leg in Table 3, EC-Earth 4 took about 65 minutes to simulate one year while the

monitoring script’s execution took 11.3 minutes. The leg length varied over time (see Figure 8),

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 35

Task Total Time in s

Scalar 0.008

SimulatedYearsRteScalar 0.074

DiskusageRteScalar 0.98

Timeseries 3.649

Si3HemisPointMonthMeanAllMeanMap 5.964

Si3HemisPointMonthMeanTemporalmap 6.052

Si3HemisSumMonthMeanTimeseries 11.863

NemoGlobalMeanYearMeanTimeseries 15.761

NemoAllMeanMap 15.817

NemoYearMeanTemporalmap 16.662

Redmine 18.768

OifsAllMeanMap 153.917

OifsGlobalMeanYearMeanTimeseries 161.876

Command 3879.904
Table 3 Total execution times for the different monitoring tasks during an exemplary leg of the test experiment. The Command task
starts the actual simulation.

while the time for monitoring tasks stays roughly constant. Monitoring one leg increased the

computation time by 17.0% in this leg and between 16.9% and 19.5% in this experiment. In

general, these values can be higher or lower, depending on the amount of diagnostics a user wants

to create.

Table 3 reveals discrepancies between the monitoring tasks. Loading files and data manipulation

takes time. As a consequence, physical performance tasks take longer than computational perfor-

mance tasks. Due to the additional spatial operation, the time series tasks for physical performance

often take longer than their map or temporal map counterparts. Creating OpenIFS diagnostics

takes about ten times as long as the NEMO equivalents. The NEMO tasks on the other hand take

noticably longer than their SI3 counterparts. These differences arise from the time it takes to load

input files: The SI3 tasks load one to two files when they are called, whereas NEMO diagnostics

are usually based on twelve input files. These have to be loaded and appended, resulting in a

more time-consuming operation. The much slower OpenIFS tasks use GRIB files as their input, as

opposed to the NetCDF output from NEMO and SI3. The Python library used to load input and

save diagnostics, Iris, takes longer to load GRIB files than anticipated during development.

To improve the monitoring tasks’ performance, the OpenIFS diagnostics should get worked on first.

Ideas for this will be discussed in detail in the final chapter, Discussion and Outlook. To reduce the

impact of long execution times, an EC-Earth 4 user can run the monitoring tasks on a dedicated

computing node. Then the simulation continues while the diagnostics are created and presented.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 36

6. Discussion and Outlook

With the software described in this thesis, the programming task defined in the introduction

is completed: A component-independent monitoring tool for the computational and physical

performance of EC-Earth 4, based on the ScriptEngine framework, has been developed. The design

principles from section 3.1 provide the basis for a more in-depth discussion of the implementation’s

strengths and limitations: The developed tool should be helpful, robust, user-friendly, modular,

and extendable. It should furthermore stick to established standards where possible.

As was motivated in detail in chapter 4, the implemented processing tasks create meaningful, rele-

vant, and established diagnostics to monitor climate model performance. The chapter Exemplary

Monitoring Results gives a general overview of the used computational resources and the physical

features of the test simulation. The diagnostics reveal problems with the sea ice coupling while also

showing realistic values for oceanic variables. The live updates from the presentation tasks enable

an accessible user experience of monitoring the current simulation. By the requirements from

section 3.1, the tool can thus be considered helpful. Nevertheless, some very common and more

complex diagnostics are missing: Diagnostics such as the AMOC index or the Barotropic Stream

Function are typical ocean diagnostics that the tool does not monitor yet. For the atmosphere,

measures like the surface precipitation minus evaporation or net heat fluxes should be added in the

future. Besides that, the tool so far cannot analyze 3D variables or create output for custom regions

of the ocean or land surface. Such extensions will make the tool more helpful to all EC-Earth 4

users. A list of useful diagnostics that cannot be created yet has therefore been assembled and can

be worked on in the coming months.

Robustness as defined in section 3.1 consists of two aspects: The monitoring tool should neither

interrupt the experiment nor slow down EC-Earth significantly. The implemented processing and

presentation tasks catch the most typical user input errors with expressive log statements. In that

case, the task will return without output and the next one is instantiated. Unexpected problems will

however lead to failure of the task and, more importantly, a ScriptEngine error. Since the same

instance of ScriptEngine is used for running EC-Earth and its monitoring, the experiment will

then be interrupted by an error in a monitoring task. When testing a new setup or the monitoring

tool specifically, this might be less of a problem, or even a positive effect. On the other hand, this

contradicts the design principle of robustness as it was defined in section 3.1. The problem will

not be solved by simply changing the monitoring tasks, as can be showed by a simple example:

Suppose a processing task catches all exceptions that can happen during the run() method using a

generic try-except statement:

class ExampleProcessingTask(Task):

def __init__(self , parameters):

define required parameters here

e.g., 'src ', 'dst ',...

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 37

def run(self , context):

try:

load input data

process data

save diagnostic on disk

except:

self.log_warning("Unexpected exception! Returning"

)

return

Even if one chose this wildcard approach1, the EC-Earth experiment might stop because of a

monitoring error: If a user forgets a required argument in the YAML script, the ScriptEngine base

class Task will stop the initialization with a RuntimeError. A behavior consistent with the design

principle would be the following: For all monitoring tasks, the ScriptEngine framework ignores

exceptions and continues on with the next task. As soon as the monitoring is complete, it returns

to its regular "runtime environment" mode where Task errors lead to experiment failure. Such a

feature will be implemented in the ScriptEngine framework in a future release. To prepare for the

change, a list of possible user input errors has been created, complemented by strategies of dealing

with them.

By the results in chapter 5, monitoring an EC-Earth experiment increases the computing time

by 16.9-19.5%. This is a significant slowdown affecting the EC-Earth experiment, unless one

allocates a dedicated computing node just for the monitoring tool. The amount of time spend

on monitoring diagnostics varies depending on the extent of the user’s YAML script, but is also

influenced by the chosen processing tasks: 70.3% of these 11 minutes is spent on processing the

OpenIFS diagnostics (3 out of 33 instantiated tasks). Considering the fact that the goal was a

lightweight tool, the performance needs to improve by a lot in the future, and working on the

OpenIFS tasks should be the beginning of this effort. The root of the large time consumption is the

loading of GRIB files. There are different possibilities to deal with this like, e.g., reusing loaded

GRIB data across processing tasks. Depending on how this is carried out, this might however lead

to storing very large amounts of data in memory. A more promising approach seems to be that the

latest release of OpenIFS (43r3) supports writing NetCDF output using XIOS. Once EC-Earth 4

upgrades to this newer version of OpenIFS, the respective tasks will need to be rewritten to load

NetCDF instead of GRIB files. But after these changes, monitoring OpenIFS output should be

a lot faster and comparable to the processing tasks for NEMO and SI3. Assuming that such new

tasks take about 30s per instantiation–a conservative estimate based on the values in Table 3–the

monitoring script used for the experiment in chapter 5 could be executed in about 4.5 instead of

11.3 minutes.

In general, the monitoring tool is not robust by the definition in 3.1, and the goal is not easily

achievable without updates to EC-Earth 4 or the ScriptEngine framework. The design principle is

1 This is not a recommended way of handling exceptions, as the Python documentation mentions: "Use this with extreme
caution, since it is easy to mask a real programming error in this way!" (https://docs.python.org/3/tutorial/errors.html)

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 38

nevertheless very important to the monitoring tool’s further development. The expected changes to

EC-Earth 4 are promising in this regard.

Since the tool is based on ScriptEngine, EC-Earth 4 users will not have to adjust to a new or

complex interface. With the naming scheme described in chapter 3, a consistent user experience

has been established. A user guide has been added to the package for additional help. During

development, a focus was set on processing and presentation tasks that are flexible and less

specialized on single diagnostics. This creates a rich set of selectable monitoring diagnostics, even

in this first release, and gives the user more control. It makes it more likely that users use this tool

instead of their own scripts. On the other hand, the more abstract tasks might be harder to grasp.

Usage examples were thus key in the accompanying resources. In general, the monitoring tool can

be considered user-friendly by the requirements in chapter 3.

The modularity of the developed software mostly results from the modularity of ScriptEngine.

Customizing the monitoring setup is unproblematic since few tasks depend on each other. A very

important part is played by the task separation described in section 3.3. This allows new processing

tasks to be developed without changing presentation tasks and vice versa2. The substructure of

processing tasks shown in Figure 3 adds dependencies between them. This decision leads to less

redundant code and was deemed preferable to completely independent processing tasks.

The monitoring tool is available as an open-source Python package. Automated tests have been

added for each module, resulting in 95% code coverage and a basis for future development without

unknowingly breaking existing functionality. Its underlying concepts are independent of EC-Earth

components, as opposed to past tools like Barakuda, which was built to monitor NEMO output

(Brodeau, 2017). No concept described in this thesis is closed-off: Processing and presentation

tasks, as well as the defined diagnostic types and diagnostics on disk can be added onto in the

future. The naming scheme in section 3.3.3 allows for a diverse set of diagnostics and processing

tasks with consistent titles. Developer guidelines in addition to the user documentation summarize

requirements and suggestions for future development, such as a logging policy and code structure

recommendations. All of these aspects work towards the same goal: The monitoring tool is built to

be extendable, thus fulfilling the fifth design principle.

The final principle mentioned in section 3.1 was sticking to established standards. The names of

supported diagnostic types are influenced by literature on climate model performance, as well

as geographic information systems. By trying to be CF compliant whenever possible, as well as

using design choices and controlled vocabulary from the CMIP data request, common conventions

from climate science were taken into account. Implemented processing tasks are always motivated

by well-known diagnostics. New guidelines were only developed where none existed so far: For

example, the naming scheme was developed as it became necessary and no other comparable

analysis tool had a consistent way of naming diagnostics.

The design principles from chapter 3 have played a large role in developing the monitoring tool.

Most of the goals described in that section have been achieved and the others are achievable in the

2 as long as the diagnostic on disk interface does not have to be extended because of a new diagnostic or map type

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 39

near future.

While the developed tool is limited to usage with EC-Earth 4, the key design decisions in this

thesis are not. In general, monitoring tools for coupled climate models profit from a component-

agnostic design. This approach encourages long-term considerations that are less dependent on the

current version of individual software components. It enforces code driven by standardization and

extensibility, rather than being hard to maintain but tailored for one specific application. Various

aspects of a simulation can now be monitored in one and the same place, giving EC-Earth 4 users a

real-time overview of their experiment. The separation of data creation and visualization is a central

element of this concept and can be applied to tools with similar purposes. It requires a concise

interface, defined here as diagnostics on disk, which gives code maintainers clear guidelines for

future developments. This makes the tool more robust and well-defined. Finally, the creation

of extensive supplementary material (documentation, examples, and tutorials) and a high test

coverage will be beneficial to the future usability of the monitoring tool.

The development of EC-Earth 4 will be ongoing in the next couple of years. Accordingly, the

monitoring tool will require modification because of new or discontinued features. This long-term

development can demonstrate which concepts and decisions enable or limit the extensibility and

modularity. In the next months, more complex diagnostics like the AMOC index and regional

maps should be added. The computational performance of the monitoring tool must not be

neglected: Switching to NetCDF output for OpenIFS will reduce the problems found in chapter 5

significantly–but until that is the case, other solution strategies might have to be explored.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 40

7. Code Availability and Resources

The monitoring tasks for EC-Earth 4 are available on GitHub at https://github.com/uwefladrich/

scriptengine-tasks-ecearth/. The descriptions in this thesis are based on the code version at commit

https://github.com/valentinaschueller/scriptengine-tasks-ecearth/commit/ad43d2c. The documen-

tation is on Read the Docs: https://scriptengine-tasks-ecearth.readthedocs.io/. Additional material,

such as exemplary monitoring results and scripts as well as presentations are in the EC-Earth 4

monitoring resources: https://github.com/valentinaschueller/ece-4-monitoring-resources/.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 41

Acknowledgements

This thesis was written as part of an internship at the Swedish Meteorological and Hydrological

Institute in Norrköping. To everyone who made this work out during these extraordinary times: I

would like to express my sincerest gratitude to you. First and foremost, thank you to Uwe Fladrich

for his supervision and support. These months have been an invaluable learning opportunity and

they would not have been possible without him. Thank you to Univ.-Prof. Dr. Hans-Joachim

Bungartz at the Technical University of Munich for examining, and thus enabling, this external

thesis. Pablo, thank you so much for proofreading this thesis and coming along. To David Docquier,

Torben Königk, Klaus Zimmermann, Pasha Karami, Klaus Wyser, Tim Kruschke, and everyone

else at the Rossby Centre: Thank you for all of the feedback and discussions along the way.

Finally, I would like to thank all developers who enable projects like this with their useful packages

and comprehensive documentation: The monitoring tasks make use of the Python packages Iris,

Matplotlib, PyYAML, Numpy, Cartopy, Imageio, Python-Redmine, Jinja2, and Pytest.

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 42

Acronyms

AMOC Atlantic Meridional Overturning Circulation. 37, 40

CF climate and forecast. 14, 15, 19, 20, 22, 26, 27, 39

CHSY core hours per simulated year. 3, 19

CMIP Climate Model Intercomparison Project. 6, 14, 15, 19, 20, 26, 27, 32, 39

ECMWF European Centre for Medium-Range Weather Forecasts. 5, 27

ESM Earth system model. 1, 6, 32

ESMValTool Earth System Model Evaluation Tool. 3, 4, 16

GCM general circulation model. 6, 32

HPC high-performance computing. 3

SSH sea surface height. 20, 34, 35

SST sea surface temperature. 11, 13, 20–23, 29

SYPD simulated years per day. 3, 13, 14, 19, 32–34

XIOS XML I/O server. 6, 38

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 43

Bibliography

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G.,

Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood,

S., & Wright, G. (2017). CPMIP: Measurements of real computational performance of

Earth system models in CMIP6. Geoscientific Model Development, 10(1), 19–34. https:

//doi.org/10.5194/gmd-10-19-2017

Brodeau, L. (2017). Barakuda. Retrieved August 11, 2020, from https://github.com/brodeau/

barakuda

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong, E., Ding, C., & He, Y. (2005).

CPL6: The New Extensible, High Performance Parallel Coupler for the Community

Climate System Model. The International Journal of High Performance Computing

Applications, 19(3), 309–327. https://doi.org/10.1177/1094342005056117

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., Caron, J., Signell, R., Bentley,

P., Rappa, G., Höck, H., Pamment, A., Juckes, M., Raspaud, M., Horne, R., Whiteaker, T.,

Blodgett, D., Zender, C., & Lee, D. (2020). NetCDF Climate and Forecast (CF) Metadata

Conventions, 183.

ECMWF. (2019a). Part III: Dynamics and Numerical Procedures. In IFS Documentation CY46R1.

ECMWF. https://www.ecmwf.int/node/19307

ECMWF. (2019b). Part IV: Physical Processes. In IFS Documentation CY46R1. ECMWF. https:

//www.ecmwf.int/node/19308

ECMWF. (2019c). Part VII: ECMWF Wave Model. In IFS Documentation CY46R1. ECMWF.

https://www.ecmwf.int/node/19311

ECMWF. (2020). Spectral representation of the IFS. Retrieved August 12, 2020, from https :

//confluence.ecmwf.int/display/FCST/Spectral+representation+of+the+IFS

ESA. (2014). Understanding the ‘OC’ in GOCE. Retrieved July 9, 2020, from http://www.esa.int/

Applications/Observing_the_Earth/GOCE/Understanding_the_OC_in_GOCE

ESRI. (2012). ArcGIS Pro. Redlands, CA.

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews,

O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P. J.,

Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., . . . Williams,

K. D. (2016). ESMValTool (v1.0) – a community diagnostic and performance metrics tool

for routine evaluation of Earth system models in CMIP. Geoscientific Model Development,

9(5), 1747–1802. https://doi.org/10.5194/gmd-9-1747-2016

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016).

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental

design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.

org/10.5194/gmd-9-1937-2016

Fladrich, U. (2020). ScriptEngine. Retrieved June 25, 2020, from https://github.com/uwefladrich/

scriptengine

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 44

Frisch, J. (2014). Towards Massive Parallel Fluid Flow Simulations in Computational Engineering

(Dissertation). Technische Universität München. https : / / mediatum . ub. tum . de / doc /

1222749/1222749.pdf

Gleckler, P. J., Doutriaux, C., Durack, P. J., Taylor, K. E., Zhang, Y., Williams, D. N., Mason,

E., & Servonnat, J. (2016). A more powerful reality test for climate models. EOS. https:

//doi.org/10.1029/2016EO051663

Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008). Performance metrics for climate models.

Journal of Geophysical Research: Atmospheres, 113(D6). https : / / doi . org /10 .1029 /

2007JD008972

Gurvan, M., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Iovino, D., Lea,

D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D.,

Vancoppenolle, M., Müeller, S., Nurser, G., Bell, M., & Samson, G. (2019). NEMO ocean

engine (v4.0). Zenodo. https://doi.org/10.5281/zenodo.3878122

Hazeleger, W., Severijns, C., Semmler, T., Briceag, S., Yang, S., Wang, X., Wyser, K., Dutra, E.,

Baldasano, J., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A., Christensen, J., Hurk,

B., Jimenez-Guerrero, P., Jones, C., Kallberg, P., Koenigk, T., & Willén, U. (2010). EC-

Earth: A Seamless Earth-System Prediction Approach in Action. Bulletin of the American

Meteorological Society, 91, 1357–1363. https://doi.org/10.1175/2010bams2877.1

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Geneva, Switzerland, IPCC.

Le Sager, P., Tourigny, E., & Davini, P. (2019). EC-Earth 3 Post-Processing Tools. Retrieved

September 9, 2020, from https://github.com/plesager/ece3-postproc

Ma, H.-Y., Xie, S., Boyle, J. S., Klein, S. A., & Zhang, Y. (2013). Metrics and Diagnostics for

Precipitation-Related Processes in Climate Model Short-Range Hindcasts. Journal of

Climate, 26(5), 1516–1534. https://doi.org/10.1175/JCLI-D-12-00235.1

Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kuehnlein, C., Mozdzynski, G., Hamrud,

M., & Smolarkiewicz, P. (2016). A new grid for the IFS. ECMWF. https://doi.org/10.

21957/ZWDU9U5I

Met Office. (2010a). GRIB interface for Iris (v1.2). Exeter, Devon. http://scitools.org.uk/

Met Office. (2010b). Iris: A Python library for analysing and visualising meteorological and

oceanographic data sets (v2.4). Exeter, Devon. http://scitools.org.uk/

NSC. (2020). Tetralith. Retrieved September 9, 2020, from https://www.nsc.liu.se/systems/tetralith/

NSIDC. (2019). State of the Cryosphere: Sea Ice. Retrieved March 9, 2020, from https://nsidc.org/

cryosphere/sotc/sea_ice.html

NSIDC. (2020). Charctic Interactive Sea Ice Graph. Retrieved August 20, 2020, from https :

//nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/

Reichler, T., & Kim, J. (2008). How Well Do Coupled Models Simulate Today’s Climate? Bulletin

of the American Meteorological Society, 89(3), 303–312. https://doi.org/10.1175/BAMS-

89-3-303

Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R.,

Chanut, J., Levy, C., Masson, S., & Vivier, F. (2015). The Louvain-La-Neuve sea ice

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 45

model LIM3.6: Global and regional capabilities. Geoscientific Model Development, 8(10),

2991–3005. https://doi.org/10.5194/gmd-8-2991-2015

Schulzweida, U. (2019). CDO User Guide. https://doi.org/10.5281/zenodo.3539275

Shea, D. (2014). The Climate Data Guide: Regridding Overview. (National Center for Atmospheric

Research Staff, Ed.). Retrieved August 20, 2020, from https://climatedataguide.ucar.edu/

climate-data-tools-and-analysis/regridding-overview

Smith, E. V. (2012). Implicit Namespace Packages (PEP No. 420). Retrieved June 25, 2020, from

https://www.python.org/dev/peps/pep-0420/

Sterl, A., Bintanja, R., Brodeau, L., Gleeson, E., Koenigk, T., Schmith, T., Semmler, T., Severijns,

C., Wyser, K., & Yang, S. (2012). A look at the ocean in the EC-Earth climate model.

Climate Dynamics, 39(11), 2631–2657. https://doi.org/10.1007/s00382-011-1239-2

Stewart, R. H. (2008). Introduction to Physical Oceanography. College Station, Texas. https:

//hdl.handle.net/1969.1/160216

Unidata. (2020). The NetCDF User’s Guide (v4.7.4). Retrieved August 11, 2020, from https:

//www.unidata.ucar.edu/software/netcdf/docs/user_guide.html

Valcke, S. (2013). The OASIS3 coupler: A European climate modelling community software.

Geoscientific Model Development, 6(2), 373–388. https://doi.org/10.5194/gmd-6-373-

2013

Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T.,

Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., & Zhang, T. (2013). Observations:

Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(pp. 317–382). Cambridge, United Kingdom, New York, NY, USA, Cambridge University

Press. https://doi.org/10.1017/CBO9781107415324.012

Monitoring Numerical Climate Simulations – A Tool for the EC-Earth Climate Model 46

	Introduction
	The EC-Earth Climate Model
	Design Principles and Architecture
	Design Principles
	Existing Infrastructure
	Concept and Architecture
	Diagnostics
	Architecture
	The Structure of Processing Tasks
	Diagnostics on Disk

	Implemented Monitoring Tasks
	Processing Tasks for Computational Performance
	Scalar
	DiskusageRteScalar
	SimulatedyearsRteScalar
	Timeseries

	Processing Tasks for NEMO and SI3
	NemoGlobalMeanYearMeanTimeseries
	NemoAllMeanMap
	NemoTimeMeanTemporalmap
	Si3HemisSumMonthMeanTimeseries
	Si3HemisPointMonthMeanAllMeanMap
	Si3HemisPointMonthMeanTemporalmap

	Processing Tasks for OpenIFS
	OifsGlobalMeanYearMeanTimeseries
	OifsAllMeanMap and OifsYearMeanTemporalmap

	Presentation Tasks
	Markdown
	Redmine

	Exemplary Monitoring Results
	Performance Results of EC-Earth 4
	Computational Performance of the Monitoring Tasks

	Discussion and Outlook
	Code Availability and Resources

