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and close supervision. These six months were a period of immense learning and you
encouraged me to ask all the questions I could come up with. Thank you to Barbara

Wohlmuth for agreeing to examine this thesis, and for valuable advice along the way.

Thank you to everyone who has shared knowledge, opened doors, and helped make this
thesis a reality, particularly: Sophie Valcke, Uwe Fladrich, Arnaud Caubel, Olivier Marti,
Jan Streffing, Martin Schreiber, Hans-Joachim Bungartz, and Benjamin Rodenberg. I am

deeply grateful to everyone in the EC-Earth SCM group and at the ECMWF, for patiently
answering my questions and for developing the AOSCM in the first place. In my

implementation, I relied heavily on excellent, open-source, software and documentation:
I want to especially acknowledge the use of xarray, ProPlot, and Jinja.

Thank you to all members of the Laboratoire Jean Kuntzmann for making me feel so at
home during my time in Grenoble. And finally, my deepest thanks go out to everybody

else who is part of the support network I am surrounded by: It would have been
impossible without you.

vii





Abstract

Typical algorithms used to couple atmosphere and ocean models are computationally effi-
cient but mathematically inconsistent, thus introducing a numerical error. Schwarz wave-
form relaxation is an iterative coupling method to restore consistency at the interface, al-
lowing to investigate the magnitude and physical implications of this error. The large com-
putational cost of Schwarz waveform relaxation prevents in-depth numerical studies with
coupled general circulation models. On the other hand, the theoretical analysis of highly
idealized problems is insufficient to draw conclusions about general circulation models.
In this master’s thesis, a coupled atmosphere-ocean model of intermediate complexity, the
one-dimensional EC-Earth AOSCM, is modified to support different coupling schemes
used in operational climate models, as well as Schwarz waveform relaxation. This makes
it a tool to bridge the gap between previous theoretical and numerical studies. Multi-day
simulations in this new setup illustrate how physical paramaterizations in the atmosphere
react to changes in interface boundary conditions at the sea surface. Small variations in
sea surface temperature can yield potentially large differences between standard coupling
algorithms and the more accurate result of the Schwarz method. The EC-Earth AOSCM
shares a significant amount of code and architecture with the EC-Earth 3 climate model.
This similarity allows us to address algorithmic aspects and implementation challenges
for iterative coupling schemes in climate modeling.
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1. Introduction

To understand and predict how greenhouse gas emissions affect our planet and life on it,
researchers use numerical climate models. These consist of different components which
model various parts of our Earth system: oceanic and atmospheric dynamics, sea ice, veg-
etation, land surface, etc. The components are coupled in time and space to produce a
comprehensive model of the climate on our planet.

Models for a system of this scale and complexity are inherently imperfect and it is not
realistically possible to eradicate all errors which are part of climate models. Interesting
questions which arise instead are thus where we introduce errors, how large they are, and
how sensitive they are to changes in the model setup or initial conditions. In a coupled
(Earth system) model, sources of error may be the model components, but also how we
couple them. For instance, non-matching grids must be mapped to each other, introducing
an interpolation error. 

1
 Even when the model components use matching grids, coupling

introduces an error due to the fact that information between components is only exchanged
at discrete points in time and not continuously. Which information is exchanged and at
what points in time is referred to as the coupling scheme used by the model.

Most resources in Earth system modeling are spent on improving the model components
either by increasing the physical and numerical accuracy or by reducing the computational
cost. The latter allows researchers to use a higher resolution in time and space with the
same computational resources. However, as noted by Gross et al. ( 2018 , p. 3505): “As
the error associated with each component decreases, the errors introduced by the coupling
will eventually dominate.” For this reason, there have been increased efforts to study the
impact of the coupling scheme on the numerical solution in Earth system models.

As a result of this research, it has been discussed that coupling schemes customary
in climate modeling and numerical weather prediction are computationally efficient but
mathematically inconsistent (Gross et al.,  2018 ; Lemarié et al.,  2015 ). Schwarz waveform
relaxation (SWR) has been proposed as an iterative coupling approach to recover mathe-
matical consistency, albeit with a high computational cost. It allows researchers to study
how high the error introduced by conventional coupling methods is and whether the cor-
rect interface data is exchanged. Furthermore, model results produced with SWR can serve
as reference solutions for model analysis (Gross et al.,  2018 ). Previous studies using gen-
eral circulation models showed that the difference between classical approaches and the
converged SWR solution can be significant (Connors & Ganis,  2011 ; Lemarié et al.,  2014 ),
particularly around sunrise and sunset (Marti et al.,  2021 ). In idealized atmosphere-ocean

1see for example Keyes et al. ( 2013 , section 3.2.1) or Gatzhammer ( 2014 , section 2.4) for a discussion of differ-
ent data mapping techniques in multiphysics coupling.
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1. Introduction

models, Schwarz waveform relaxation serves as a framework to mathematically study the
error propagation in time and find mathematically optimal interface conditions (Clement
et al.,  2022 ; Connors & Miloua,  2011 ; Lemarié et al.,  2013b ; Thery et al.,  2022 ).

In this master’s thesis, we use Schwarz waveform relaxation to study coupling errors
in time for a single column climate model (SCM). These models are one-dimensional in
space, simulating a single vertical column of, e.g., the atmosphere and the ocean. SCMs
require significantly fewer computational resources than general circulation models and
Earth system models. Since a single column model does not have a horizontal discretiza-
tion, the grids match at the interface and this potential source of coupling error is removed.
Compared to idealized climate models, SCMs include realistic physical parameterizations
for subgrid-scale phenomena and are based on more complex governing equations by in-
cluding, e.g., the conservation of internal energy, moisture, and salinity. In the context
of studying physical processes in a model hierarchy (Maher et al.,  2019 ) and developing
Earth system models (Hourdin et al.,  2017 ), SCMs can bridge a gap between idealized and
full complexity models.

The model studied in this master’s thesis is the EC-Earth coupled atmosphere-ocean
single column model (AOSCM) (Hartung et al.,  2018 ). We have modified the EC-Earth
AOSCM to be a tool for comparing different atmosphere-ocean coupling schemes in a cli-
mate model of intermediate complexity. We conduct different numerical experiments in
this new setup and show the sensitivity of multi-day forecasts to changes in the coupling
algorithm. This master’s thesis also provides a detailed formulation of the coupling prob-
lem solved by the model and describes how to implement Schwarz waveform relaxation
in coupled models with a similar structure, particularly those making use of the OASIS3-
MCT coupler. Our solution approach treats the atmosphere and ocean models as black
boxes and is minimally invasive. However, it does not allow for higher order Schwarz
waveform relaxation as presented, e.g., in Rüth et al. ( 2018 ).

The rest of this master’s thesis is structured as follows: Chapter  2 gives an overview of
coupling schemes commonly used in atmosphere-ocean coupling as well as the theoretical
background for Schwarz waveform relaxation methods. Chapter  3 presents the EC-Earth
AOSCM and the coupling problem it solves. The following Chapter  4 explains how we
approached to implement different coupling configurations in the EC-Earth AOSCM. We
continue with different numerical experiments at the PAPA station in the Northern Pacific
Ocean: We test the impact of different coupling algorithms on multi-day simulations in
Chapter  5 . In Chapter  6 , we discuss the numerical results and our implementation ap-
proach. The master’s thesis closes in Chapter  7 with a conclusion and outlook.

2



2. Coupling Schemes in Atmosphere-Ocean
Coupling

Before we move to the EC-Earth single column model, this chapter gives a general overview
of potential algorithms to couple atmosphere and ocean models in time, so-called coupling
schemes. It starts off with a symbolic definition of the atmosphere-ocean coupling prob-
lem in Section  2.1 . Commonly used coupling schemes for this problem are presented in
Section  2.2 , while Schwarz waveform relaxation as an alternative approach to coupling is
the topic of the concluding Section  2.3 .

2.1. The Generalized Atmosphere-Ocean Coupling Problem

To discuss coupling approaches without limiting ourselves to a single model, we formu-
late the atmosphere-ocean coupling problem in a symbolic form, similar to Lemarié et al.
( 2014 ), Lemarié et al. ( 2015 ), and Marti et al. ( 2021 ). Particularly, we can view atmosphere-
ocean coupling as a case of domain decomposition: The two models act on adjacent, non-
overlapping domains Ωatm and Ωoce with a common interface Γ, the sea surface, cf. the
illustration in Figure  2.1 . Together, they solve a system of time-dependent, nonlinear par-
tial differential equations to describe the state of Earth’s atmosphere and ocean. Taking
this holistic view will allow us to introduce Schwarz methods naturally later on in this
chapter. In the interior of both subdomains, a partial differential operator L acts on state
variables U. In both systems, this state vector includes the horizontal velocities and the
temperature of the fluid. We will see in Chapter  3 that the atmospheric state vector Ua

additionally contains moisture and the oceanic state vector Uo is completed by including
salinity.

In addition to the system of partial differential equations, the atmospheric and oceanic
states are subject to boundary and initial conditions:

LatmUa = fatm in Ωatm × [0, T ],
BatmUa = gatm in ∂Ωext

atm × [0, T ],
Ua|t=0 = Ua

0 in Ωatm,

(2.1)


LoceU

o = foce in Ωoce × [0, T ],
BoceU

o = goce in ∂Ωext
oce × [0, T ],

Uo|t=0 = Uo
0 in Ωoce.

(2.2)

3



2. Coupling Schemes in Atmosphere-Ocean Coupling

Γ

Ωatm

∂Ωatm

Ωoce

∂Ωoce

Figure 2.1.: Illustration of the domain decomposition problem in atmosphere-ocean inter-
action.

In these equations, f symbolizes forcing terms, g refers to boundary conditions, and U0

are the initial conditions, all of which we assume to be provided externally. We use the
subscripts atm, oce and superscripts a, o to distinguish between the atmosphere and ocean
when necessary. B is a differential operator acting on the boundaries of the subdomains,
∂Ωatm and ∂Ωoce. Depending on the choice of the boundary operator, one can distinguish
common types of boundary conditions:

• B = Id represents Dirichlet conditions,

• B = ∂
∂n , with n the normal vector of ∂Ω, represents Neumann boundary conditions,

• B = Id+ r ∂
∂n represents Robin boundary conditions with a free parameter r.

Up to this point we have not discussed what happens at the interface Γ. This is the central
question in coupling the two subproblems and the rest of this chapter will be concerned
with this topic.

From the abstract perspective of the model problem, one introduces another differential
operator C which acts on U at the interface and thus denotes the interface conditions, also re-
ferred to as transmission conditions depending on the literature (Blayo et al.,  2017 ; Gander,
 2015 ; Gander & Halpern,  2007 ). Note that, in general, Catm 6= Coce. In many multiphysics
applications, C takes forms similar to the common types of boundary conditions presented
above. The choice of the interface operators is used to classify the coupling problem, with
a particularly popular choice being Dirichlet-Neumann algorithms in fluid-structure inter-
action problems (e.g., Gatzhammer,  2014 ).

The form of C depends on the underlying problem. For domain decomposition appli-
cations (where L is the same in all subdomains), so-called natural or physical transmis-
sion conditions can be determined using the variational formulation of the problem, see
for example Blayo et al. ( 2017 ). These impose constraints on C which are required for

4



2.2. Standard Approaches for Coupling in Time

Uo

Ua

tn tn+1

Figure 2.2.: Illustration of the multirate setting in the atmosphere-ocean coupling problem.
In general, the atmosphere and ocean model exchange information whenever
a coupling window is over, i.e., at the dashed lines in the figure.

well-posedness of the coupling problem. 

1
 For complex multiphysics problems such as

atmosphere-ocean coupling, it is not possible to derive natural transmission conditions in
this sense. Here, a common assumption is instead that the air-sea fluxes are continuous
across the sea surface (Lemarié et al.,  2015 ) and that they can be computed using a (nonlin-
ear) function Foa which takes into account the atmospheric and oceanic states. This leads
to the following generalized coupling problem solved in a general circulation model:

LatmUa = fatm in Ωatm × [0, T ],
BatmUa = gatm in ∂Ωext

atm × [0, T ],
LoceU

o = foce in Ωoce × [0, T ],
BoceU

o = goce in ∂Ωext
oce × [0, T ],

CatmUa = CoceU
o = Foa (Ua,Uo) on Γ× [0, T ].

(2.3)

We will discuss the forms of both C and Foa in more detail in Section  3.3 .

2.2. Standard Approaches for Coupling in Time

In order to discuss coupling schemes, we need to introduce a temporal discretization of
the coupling problem: Instead of a continuous exchange of information, which would be
the case in the real Earth system, the two numerical models for the ocean and atmosphere
communicate at N points in time tn, where t0 = 0 and tN = T . We call the intervals
[tn, tn+1] coupling windows and without loss of generality, we assume that all coupling win-
dows have the same size during one simulation,

∆t = tn+1 − tn =
T

N
∀n = 0, 1, . . . , N − 1.

The model components can use time step sizes smaller than the coupling window size to
integrate the subproblems in Equations ( 2.1 ) and ( 2.2 ). Similarly, we do not require the

1If the variational form imposes, e.g., flux conservation, Dirichlet interface conditions will not be sufficient.
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2. Coupling Schemes in Atmosphere-Ocean Coupling

models to use the same time step sizes, as long as the coupling time steps tn are a subset
of the model time steps. Allowing for this flexibility makes atmosphere-ocean coupling a
multirate problem (Keyes et al.,  2013 ). Figure  2.2 illustrates this property for one exemplary
coupling window. This flexibility reflects the fact that the ocean is in general a slower sys-
tem than the atmosphere and might not need the same temporal resolution to capture its
dynamics sufficiently. Furthermore, it allows model time steps to be different depending
on criteria such as accuracy, stability, and computational cost.

2.2.1. The Parallel Algorithm

At each coupling time step tn, the air-sea fluxes Foa can be computed to obtain the inter-
face conditions for the next coupling window. This choice introduces a coupling lag: The
interface conditions are computed at tn but used by both models until tn+1. All coupling
schemes discussed in this section are lagged, albeit to a different extent. In the context of
multiphysics coupling, these coupling algorithms are also referred to as being loose (Keyes
et al.,  2013 ).

A simple, parallel coupling algorithm could take the following form: At a coupling time
step tn, both models send the average of their state vector over the previous coupling
window [tn−1, tn], which we denote by 〈Ua〉tntn−1

and 〈Uo〉tntn−1
. This is used to compute the

air-sea fluxes for the next coupling window,

CatmUa(t) = CoceU
o(t) = Foa

(
〈Ua〉tntn−1

, 〈Uo〉tntn−1

)
for t ∈ [tn, tn+1]. (2.4)

This algorithm is parallel because both models only depend on information from the pre-
vious coupling window. Therefore, Ua and Uo can be evolved to the next coupling time
tn+1 in parallel. The disadvantage of this approach is that both models have to wait at tn
for the computation of Foa before continuing with the next coupling window.

However, the air-sea fluxes are usually computed by the atmospheric component in ev-
ery time step instead of once per coupling window due to the faster nature of atmospheric
dynamics (Marti et al.,  2021 ). Thus, the two models do not see the same interface condi-
tions in a given time step. Instead, the (relaxed) goal is to force both models by the same
mean fluxes over a given coupling window to ensure their conservation (Lemarié et al.,
 2014 ). For the air-sea fluxes seen by the atmosphere, we thus obtain

CatmUa(t) = Foa

(
Ua(t), 〈Uo〉tntn−1

)
for t ∈ [tn, tn+1]. (2.5)

At time tn, the ocean model sends the average of its state vector (at the interface Γ) over
the previous coupling window [tn−1, tn] to the atmosphere model. The atmosphere model,
on the other hand, sends the mean of the air-sea fluxes 〈CatmUa〉tntn−1

and we obtain:

CoceU
o(t) = 〈CatmUa〉tntn−1

=
〈
Foa

(
Ua, 〈Uo〉tn−1

tn−2

)〉tn
tn−1

for t ∈ [tn, tn+1]. (2.6)
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Uo

Ua

tn−2 tn−1 tn tn+1

〈Uo〉 〈Uo〉

〈Foa (〈Uo〉)〉 〈Foa (〈Uo〉)〉

Figure 2.3.: The parallel coupling scheme for atmosphere-ocean coupling. The diagonal
arrows indicate communication of data between the model components. The
braces illustrate that the averages 〈·〉 are based on the full coupling window.
The interval [tn−2, tn−1] is included to visualize the coupling lag.

Because of the asymmetry introduced by computing the fluxes in the atmospheric com-
ponent, the atmosphere and ocean see a lag of ∆t and 2∆t in the interface conditions,
respectively. This coupling scheme has been referred to as the (asynchronous) parallel
algorithm for atmosphere-ocean coupling (Lemarié et al.,  2014 ; Marti et al.,  2021 ) and is
visualized in Figure  2.3 .

2.2.2. The Sequential Algorithms

In contrast to the parallel algorithm, it is also possible to switch to a sequential coupling
of atmosphere and ocean. Two variants exist, the sequential atmosphere-first and the se-
quential ocean-first algorithms. With sequential atmosphere-first coupling, the ocean waits
with its computation of [tn, tn+1] until the atmosphere has computed Ua(tn+1). The ocean
model then uses the new information provided by the atmospheric component:

CatmUa(t) = Foa

(
Ua(t), 〈Uo〉tntn−1

)
(2.7)

CoceU
o(t) = 〈CatmUa〉tn+1

tn =
〈
Foa

(
Ua, 〈Uo〉tntn−1

)〉tn+1

tn
, (2.8)

with t ∈ [tn, tn+1]. Note that, in this configuration, the coupling lag is reduced to ∆t for
both models.

In the sequential ocean-first case, the atmospheric component waits for the ocean model
to compute the coupling window before evolving Ua with the new interface data. Thus,

7



2. Coupling Schemes in Atmosphere-Ocean Coupling

Uo

Ua

tn−2 tn−1 tn tn+1

〈Uo〉 〈Uo〉

〈Foa (〈Uo〉)〉〈Foa (〈Uo〉)〉

(a) The sequential atmosphere-first coupling algorithm.

Uo

Ua

tn−2 tn−1 tn tn+1

〈Uo〉 〈Uo〉

〈Foa (〈Uo〉)〉〈Foa (〈Uo〉)〉

(b) The sequential ocean-first coupling algorithm.

Figure 2.4.: The sequential algorithms for atmosphere-ocean coupling. The interface data
and communication arrows in black provide the boundary conditions for
[tn, tn+1]. The respective data for the previous coupling window is shown in
gray and cyan. In contrast to Figure  2.3 , [tn, tn+1] does not depend on data
from [tn−2, tn−1], thus the coupling lag is reduced.

the fluxes take the following form for t ∈ [tn, tn+1]:

CoceU
o(t) = 〈CatmUa〉tntn−1

=
〈
Foa

(
Ua, 〈Uo〉tntn−1

)〉tn
tn−1

(2.9)

CatmUa(t) = Foa

(
Ua(t), 〈Uo〉tn+1

tn

)
. (2.10)

Again, this reduces the maximum coupling lag to ∆t. Both sequential algorithms are illus-
trated in Figure  2.4 .

In Marti et al. ( 2021 ), both sequential coupling schemes led to improved numerical re-
sults for a 3D coupled general circulation model compared to the parallel algorithm, with
the sequential atmosphere-first version outperforming the ocean-first algorithm. The ben-
efit of improved accuracy comes at the expense of a higher computational cost: Assuming
that the computational effort for both models is similar, switching from parallel to sequen-
tial coupling increases the time to solution roughly by a factor of two.

8



2.3. Schwarz Waveform Relaxation

According to the research by Marti et al. ( 2021 ), the parallel algorithm is used more fre-
quently than the sequential atmosphere-first coupling scheme. As they state, ”no model
uses a sequential ocean-first algorithm” (Marti et al.,  2021 , p. 2960). Nevertheless, com-
paring all three variants can be of help to gain additional insight into the interaction of
coupled fast and slow systems.

2.3. Schwarz Waveform Relaxation

2.3.1. Continuous Schwarz Waveform Relaxation

As has been stated in the literature, all three algorithms presented in the previous section
are mathematically inconsistent (Gross et al.,  2018 ; Lemarié et al.,  2015 ; Lemarié et al.,  2014 ;
Marti et al.,  2021 ). To justify this statement, we take on the perspective of Schwarz meth-
ods, which are based on the seminal work of Schwarz ( 1870 ). Schwarz methods encompass
various flavors of iterative methods to approach domain decomposition problems. A com-
prehensive overview of their history and developments can be found in Gander ( 2008 ).

The central theory behind Schwarz methods states the following: Suppose we have a
boundary value problem on a domain Ω which we want to split up into problems on two
subdomains Ω1 and Ω2, where Ω1 ∪ Ω2 = Ω. These domains can overlap, as was the case
in the original problem studied by Schwarz, i.e., Ω1 ∩ Ω2 6= ∅, but they do not have to.
We now solve the subproblems iteratively on each subdomain and use their solution to
update the values on the interface between the subdomains, until the iterations converge.
If the boundary value problems on Ω and the subdomains are well-posed and appropriate
interface conditions are chosen, the iterative method converges, and it converges to the so-
lution of the original problem. While the ideas are very similar for different problems, the
convergence proofs strongly depend on the problem at hand (Gander,  2008 , Section 2.1),
the subdomains, and the choice of interface conditions. The method can also be extended
to more than two subdomains.

The iterative algorithm can take two different forms: Either both subdomains work with
interface data from the previous iteration or they take turns and one waits for the other.
The first method is referred to as the additive or parallel Schwarz method and was intro-
duced in Lions ( 1988 ), whereas the other one is the original method proposed in Schwarz
( 1870 ) and is called the multiplicative or sequential Schwarz method. The multiplicative
Schwarz method usually converges in fewer iterations than the additive version (Gander,

 2008 ).
While Schwarz methods were originally designed for boundary value problems, they

are straightforward to extend to time-dependent partial differential equations. The idea
here is to solve the initial value problem on Ω×[0, T ] by iterating over the two subproblems
Ω1 × [0, T ] and Ω2 × [0, T ]. In the same way that it is possible to split Ω into more than
one subdomain, it is possible to split the time domain into smaller intervals, e.g., [0, T1]
and [T1, T ], so-called Schwarz windows. This is commonly solved by iterating until the

9
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Ω2

Ω1

0 T1 0 T1 0 T1 T1 T

· · · · · ·

1 2 K 1

(a) Additive Schwarz waveform relaxation.

Ω2

Ω1

0 T1 0 T1 0 T1 T1 T

· · · · · ·

1 2 K 1

(b) Multiplicative Schwarz waveform relaxation.

Figure 2.5.: Schwarz waveform relaxation for two subdomains depicted by the data de-
pendency over time and across iterations, for two Schwarz windows [0, T1]
and [T1, T ], with the iteration count in blue. Black arrows depict integration
from one point in time to the next. Orange arrows represent communication of
information between two iterations or from one Schwarz window to the next.

algorithm converges on Ωi × [0, T1] before moving on to the next time interval (Rüth et
al.,  2021 ). With a larger Schwarz window, more iterations are required for convergence
(Gander,  2015 ). Schwarz methods for time-dependent partial differential equations are
referred to as Schwarz waveform relaxation (SWR). 

2
 

In their original form, the additive and multiplicative Schwarz methods use Dirichlet
conditions at the interface between subdomains. As noted by Gander and Halpern ( 2007 ),
this leads to slow convergence of the iterations. By studying the underlying problem, one
can come up with better choices for the interface conditions. Finding interface operators
C which drastically reduce the number of iterations is part of the branch of optimal or op-
timized Schwarz methods. Examples of how to approach such a task for Schwarz wave-
form relaxation particularly are Gander et al. ( 1999 ) for the wave equation, Gander and
Halpern (  2007 ) for advection-reaction-diffusion problems, Lemarié et al. ( 2013a ,  2013b ) for
diffusion problems, and more recently Blayo et al. ( 2016 ) and Blayo et al. ( 2017 ) for the
Stokes and shallow-water equations, respectively. In all of these studies, however, the
problems are idealized cases of real world applications. Finding not only good but mathe-
matically optimal interface conditions is unrealistic for complex, nonlinear problems such

2Waveform relaxation is a method developed in the context of circuit simulation and these roots are still re-
flected in the name. See, e.g., Gander ( 2015 ) for a description of the original method and how it is related
to Schwarz waveform relaxation.
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2.3. Schwarz Waveform Relaxation

as atmosphere-ocean coupling.
Figure  2.5 illustrates the data dependency and flow of information for additive and mul-

tiplicative SWR. The model components exchange information between subsequent itera-
tions but also from one Schwarz window to the next. In general, the Schwarz window can
span multiple coupling periods ∆t. If this is the case, the models communicate during an
iteration at each coupling time step tn, in addition to the communication between iterations.
When to stop iterating could be determined by setting a fixed amount of iterationsK or by
choosing a criterion to determine convergence dynamically. We discuss this aspect in more
detail in Section  4.3 . By comparing Figures  2.3 to  2.5 , one can see similar communication
patterns in the parallel algorithm and additive SWR, and in the sequential algorithms and
multiplicative SWR, respectively.

These observations reveal the following conclusions, previously stated, e.g., in Gross et
al. ( 2018 ), Lemarié et al. ( 2014 ), and Marti et al. ( 2021 ): We can view the atmosphere-ocean
problem as an example of domain decomposition with no overlap of the subdomains, cf.
Figure  2.1 . By taking the perspective of Schwarz methods, the parallel algorithm can be
seen as the first iteration of an additive SWR method. Similarly, the sequential atmosphere-
first and ocean-first coupling schemes are equivalent to the first iteration of a multiplicative
SWR algorithm. Since even optimal Schwarz methods take as many iterations as there are
subdomains to converge, the solutions produced by all three coupling schemes are math-
ematically inconsistent: The subproblems Ωi × [tn, tn+1] are only solved approximately
before moving on to the next Schwarz window.

Solving Equation ( 2.3 ) approximately is not a problem in general–in fact, it is the norm.
Numerical methods per se result in approximate solutions and Earth system models are
numerical models. The question is, as mentioned in the introduction, how large the error
due to the approximation is. Schwarz waveform relaxation serves as a tool to answer this
question: By repeating the time integration from tn to tn+1 until the air-sea fluxes converge,
one can generate a reference solution and compare it to the results with standard coupling
schemes. The converged solution uses fully re-synchronized fluxes during t ∈ [tn, tn+1]:

CatmUa(t) = Foa

(
Ua(t), 〈Uo〉tn+1

tn

)
(2.11)

CoceU
o(t) = 〈CatmUa〉tn+1

tn =
〈
Foa

(
Ua, 〈Uo〉tn+1

tn

)〉tn+1

tn
. (2.12)

If the convergence speed of the iterations is very slow, or if the method does not con-
verge, the SWR perspective implies that the interface conditions could be incompatible
and should be worked on, an issue discussed by Lemarié et al. ( 2014 ). In the case of
non-convergence, the underlying coupling problem might not ”obey regularity” or could
even be ill-posed (Gross et al.,  2018 , p. 3523). Such a result is not unthinkable consider-
ing the fact that Earth system model components are usually developed independently of
each other. Particularly the implementation of subgrid-scale physics is mostly based on
semi-empirical laws and the interaction of the physical parameterizations with dynamics

11
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is non-trivial. This is already the case in a single model component and gets amplified in
a coupled situation, potentially impairing the regularity of solutions. See also Gross et al.
( 2018 , Section 5) for a more in-depth discussion of this issue.

2.3.2. Schwarz Waveform Relaxation in a Time-Discretized Setting

The mathematical theory behind Schwarz waveform relaxation is based on the model com-
ponents exchanging functions of time, not discrete values. That is, over one Schwarz win-
dow, the subdomains exchange time-continuous interface conditions. The SWR algorithm
we have defined based on the parallel and sequential coupling schemes notably uses con-
stant fields in the interface conditions: the average of Uo or CatmUa over the time intervals
[tn, tn+1]. One can view these single values as approximations of the ”true” interface con-
ditions using a constant function.

Again, this is a source of error in the coupling algorithm. One can demonstrate that
using single value coupling limits the achievable order of convergence in time of the nu-
merical solution. Furthermore, this can affect the stability and energy conservation of the
coupled model, particularly for multirate applications. See, e.g., Rüth et al. ( 2018 ) and ref-
erences therein for numerical studies demonstrating these issues. It is possible to mitigate
these problems by exchanging higher order interpolants, a technique referred to as higher
order waveform iterations or relaxation (Rüth et al.,  2018 ).

The topic of convergence order is its own, separate issue in weather and climate simu-
lations: The ocean model studied in this thesis uses a first-order time integration method
as part of its time integration scheme (Madec et al.,  2017 ). Thus the overall achievable
convergence order of the model is not just limited by the coupling scheme, but also by the
individual models. But even if this were not the case, the physical parameterizations in
Earth system models make convergence studies in the classical sense difficult. One reason
for this is that the parameterization schemes are based on semi-empirical models opti-
mized for certain time ranges, reference solutions might thus ”violate physical assump-
tions” (Gross et al.,  2018 , p. 3512). Gross et al. ( 2018 , Section 2e) discuss these issues and
propose ways of going forward.

For the purposes of this master’s thesis, it is thus clear that implementing quadratic or
cubic interpolations of the interface conditions is not necessary from the point of view of
numerical convergence order. Nevertheless, it might have benefits regarding the stability
of solutions for larger time step sizes, especially seeing the multirate nature of atmosphere-
ocean coupling. Implementing higher order waveform relaxation is not a trivial task as
indicated by the discussion in Rüth et al. ( 2021 ). In the context of atmosphere-ocean cou-
pling, some additional care has to be taken to respect the conservation of fluxes and energy
by the interpolations. Additionally, one would have to make sure that coupling fields do
not move out of physical bounds due to interpolation. We will discuss some of these as-
pects in more detail in Section  6.2 .
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3. Overview of the EC-Earth AOSCM

This chapter presents the main components of the EC-Earth coupled atmosphere-ocean
single column model, first described in Hartung et al. ( 2018 ). We omit everything related
to the sea ice component LIM since we focus on pure atmosphere-ocean coupling in this
thesis. Furthermore, we disregard terms which do not play a significant role near the
model interface, i.e., the sea surface. We begin with the atmosphere and ocean models in
Section  3.1 and Section  3.2 , respectively: OpenIFS and NEMO. 

1
 We specify the systems

of equations in detail with Hartung et al. ( 2018 ) as a starting point, with adjustments and
expansions based on ECMWF ( 2014 ), Lauritzen et al. ( 2022 ), and Olbers et al. ( 2012 ). Each
section ends with a short overview of the model discretizations. In Section  3.3 , we specify
the interface boundary conditions to complete the definition of the coupling problem. A
short overview of the coupling setup with OASIS3-MCT is given in Section  3.4 .

Both OpenIFS and NEMO are based on a modified version of frequently used conser-
vation laws in geophysical fluid dynamics which are called primitive equations. These en-
compass at least the conservation of mass (i.e., the continuity equation), momentum (i.e.,
the Navier-Stokes equations), and internal energy. The term primitive here refers to the fact
that these equations contain the minimal set of assumptions such that they ”could prac-
tically be integrated numerically” (Vallis,  2017 , p. 104). As given by Vallis ( 2017 , Section
2.2.4), three approximations are thus implied for both models: the hydrostatic approxima-
tion, the shallow-fluid approximation, and the traditional approximation. The latter two
have the effect that in some terms in the equations of motion, the vertical extent or vertical
velocities of the ocean/atmosphere are neglected. The hydrostatic approximation states
that the vertical momentum equation is reduced to a balance between vertical pressure
gradient and buoyancy force, leading to the hydrostatic equation:

∂p

∂z
= −ρg. (3.1)

This also implies that (vertical) convective processes are removed from the Navier-Stokes
equations and need to be parameterized instead.

In contrast to Hartung et al. ( 2018 ), we explicitly state how physical parameterizations
affect the equations solved by OpenIFS and NEMO. Like this, the necessary boundary
conditions at the sea surface become visible.

1We use the AOSCM with the same model components as described in Hartung et al. ( 2018 ): cycle 40R1 of
the OpenIFS single column model and version 3.6 of NEMO.
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3. Overview of the EC-Earth AOSCM

3.1. OpenIFS

The primitive equations for OpenIFS in the single column setup are given in Equations ( 3.2 )
to ( 3.5 ). Equations ( 3.2 ) and ( 3.3 ) are the momentum equations for the horizontal wind
components, consisting of the zonal and latitudinal wind velocities u and v, respectively.
Equation ( 3.4 ) is the thermodynamic equation for the temperature T , i.e., it represents the
conservation of internal energy. Equation ( 3.5 ) is the conservation equation for moisture q.

∂u

∂t
= −ω∂u

∂p
+Fu − g

∂Ju
∂p

+f(v − vg) (3.2)

∂v

∂t
= −ω∂v

∂p
+Fv − g

∂Jv
∂p
−f(u− ug) (3.3)

∂T

∂t
= −ω∂T

∂p
+FT − g

∂JT
∂p

+
RTω

cpp
+
g

cp

∂

∂p
(FSW + FLW)+PT (3.4)

∂q

∂t
= −ω∂q

∂p
+Fq − g

∂Jq
∂p

+Pq (3.5)

We use the symbol φ to refer to a conserved quantity, which can be either one of the four
atmospheric state variables u, v, T or q. We abbreviate partial differentiation ∂

∂γφ with
respect to a coordinate γ with the shorthand ∂γφ. In the single column model, we only
encounter derivatives with respect to time, ∂t, or two variants of vertical partial deriva-
tives: We can express the vertical levels of the atmosphere with respect to pressure p or
altitude z, thus leading to partial derivatives ∂p and ∂z . 

2
 The first two terms on the right

hand side in all four equations,−ω∂pφ and Fφ, represent the vertical and horizontal advec-
tion, respectively. Here, −ω is the vertical velocity in pressure coordinates. In the single
column model, both advection terms are supplied as so-called forcing, i.e., their values are
read in as boundary conditions from a file. The fourth term in the momentum equations
combines the Coriolis effect with the balance of geostrophic wind and pressure gradient
force, f being the Coriolis parameter 

3
 : Since the geostrophic horizontal wind ug, vg is in

balance with the pressure gradient force, it does not lead to a momentum tendency in the
Coriolis term. By removing the geostrophic wind contribution from the Coriolis effect, one
can omit the pressure gradient force in the momentum equation (e.g., Thery et al.,  2022 ).

The fourth term in the thermodynamic equation represents the change of internal energy
due to work on the volume.  

4
 Therein,R is the moist air gas constant, cp is the heat capacity

of moist air at constant pressure, and ω is the vertical velocity in pressure coordinates. This

2Contrary to ECMWF (  2014 ) and Hartung et al. ( 2018 ), we formulate the equations in vertical pressure in-
stead of η-coordinates. The η-coordinate used in OpenIFS was first introduced in Simmons and Burridge
( 1981 ) to circumvent numerical issues around steep orography (e.g., mountains). This is not needed for
pure atmosphere-ocean coupling. Directly using pressure coordinates makes the equations shorter and
reduces the amount of newly introduced variables.

3f = 2Ω sin(θ), where Ω is the angular velocity and θ denotes the latitude.
4For more background on why it takes this form, cf. Vallis ( 2017 , Sections 1.6.1 and 2.6.2).
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3.1. OpenIFS

term has been derived by making use of the equation of state which relates density ρ and
pressure p:

p = ρRT. (3.6)

In the OpenIFS single column model, the air pressure p is read in from initial conditions
and kept constant for the whole simulation. This leaves a closed system of five prognostic
variables (u, v, T , q, ρ), along with five equations (  3.2 to  3.6 ). As opposed to the 3D version
of the model, no continuity equation is solved.

All other terms are related to physical parameterizations in OpenIFS. 

5
 As mentioned by

Hartung et al. ( 2018 , p. 4120), these are: ”radiation, turbulence, cloud and convection pa-
rameterisation schemes as well as the non-orographic gravity wave drag, orographic grav-
ity wave drag and surface drag.” From this list, we have omitted the gravity wave drag
schemes: The orographic gravity wave drag scheme is only relevant over land (ECMWF,

 2014 , p. IV.11). Additionally, non-orographic gravity waves are important mainly in the
”middle atmosphere, comprising the stratosphere and the mesosphere” (ECMWF,  2014 ,
Part IV, p. 67). We can thus disregard them in the atmospheric boundary layer and es-
pecially near the sea surface. The surface drag parameterization is part of the turbulence
scheme and we will not discuss it in more detail here. Thus, the radiation, turbulence,
cloud, and convection parameterization schemes remain. Although not mentioned in Har-
tung et al. ( 2018 ), the default setup includes three additional parameterizations at the ocean
surface. We will now present each parameterization briefly and describe how it appears in
Equations ( 3.2 ) to ( 3.5 ).

Radiation The radiation scheme used in OpenIFS is described in detail in ECMWF ( 2014 ,
Part IV, Chapter 2). For our purposes, it suffices to acknowledge the following: In the
atmosphere, radiation leads to heating or cooling of the atmospheric layers, which can be
represented as an additional term in the thermodynamic equation,(

∂T

∂t

)
rad

=
g

cp

∂F
∂p

=
g

cp

∂FSW

∂p
+
g

cp

∂FLW

∂p
, (3.7)

where F = FSW +FLW is the net radiative flux made up of a net short-wave and net long-
wave radiative flux, cp is the specific heat at constant pressure of moist air, and g is the
gravitational acceleration.

Vertical Turbulent Transport An in-depth explanation of vertical turbulent transport in
OpenIFS is given in ECMWF ( 2014 , Chapter IV.3). We will introduce here how turbulent
transport is generally modeled for the boundary layers of both the atmosphere and the
ocean, which makes it easy to reuse ideas and notation in Section  3.2 . A central concept

5We decided to omit the nudging (relaxation) term in the primitive equations. In typical simulations with
the EC-Earth AOSCM, nudging is only utilized above the atmospheric boundary layer, cf. Hartung et al.
( 2018 , Table 1), and is therefore not relevant near the surface.
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3. Overview of the EC-Earth AOSCM

in this context is so-called Reynolds averaging: By separating a conserved quantity φ into
a mean state φ and deviations φ′ = φ − φ (the Reynolds decomposition), one can study
how the fluctuations φ′ affect the conservation equation for φ. This leads to an additional
term w′φ′, which represents vertical turbulent transport. 

6
 Since the fluctuations act on

subgrid scales, we have to approximate this term. The turbulent closure hypothesis states
that these turbulent fluxes can be expressed in terms of large scale features, i.e., using
information available on the resolved scales. This results in the following common way of
expressing vertical turbulence: (

∂φ

∂t

)
turb

=
1

ρ

∂

∂z
Jφ. (3.8)

Here, Jφ is the vertical turbulent flux of φ, positive downwards (we choose the sign con-
vention analogously to ECMWF,  2014 ). 

7
 ρ is the fluid density. Both NEMO and OpenIFS

use the Eddy-Diffusivity Mass-Flux (EDMF) framework to define the vertical turbulent
flux,

Jφ =

(
ρKφ

∂φ

∂z
−M(φu − φ)

)
. (3.9)

The EDMF framework, first described by Siebesma et al. ( 2007 ), consists of two terms:
The first-order turbulence closure ρKφ∂zφ where Kφ is commonly called eddy viscosity if it
relates to the momentum equations and eddy diffusivity otherwise (Lemarié et al.,  2014 ). 

8
 

The second term is the advective mass fluxM(φu−φ), ”used for convective transport in the
cumulus cloud layer” (Siebesma et al.,  2007 , p. 1231). We will go into more details on the
definition of Jφ in Section  3.3 , since it plays an important part in the interface conditions.
For the primitive equations, we stick with the shorter form of Equation ( 3.8 ), reformulated
from height into pressure coordinates. 

9
 

In the OpenIFS documentation, Jφ is in general defined for the generalized liquid water
static energy sl and the specific total water qt, as opposed to T and q. Near the surface,
it is defined for the dry static energy s and q. In this work, we consider the atmosphere
near the surface and use JT instead of Js. Since s = gz + cpT , the two can be related, and
this transformation must be done inside OpenIFS since the thermodynamical equation is
given in terms of T , not s.

6A detailed derivation of this term is given in Appendix  A.1 .
7In contrast to the IFS documentation, we denote the flux by J and not J following, e.g., Lauritzen et al.

( 2022 ) and Olbers et al. ( 2012 ).
8In the IFS documentation, Kφ is referred to as the exchange coefficient (ECMWF,  2014 , Chapter IV.3).
9To move from height to pressure coordinates, we use the chain rule and the hydrostatic balance, yielding:

∂φ

∂z
=
∂φ

∂p

∂p

∂z
= −ρg ∂φ

∂p
.
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3.1. OpenIFS

Convection The formation of clouds due to moist convection, i.e., atmospheric vertical
motion where ”phase changes of water play an appreciable role” (American Meteorolog-
ical Society,  2022 , Moist Convection), is parameterized in OpenIFS using a bulk mass flux
scheme, cf. ECMWF ( 2014 , Chapter IV.6) and Fitch ( 2022 ). This affects the mass flux term
in the vertical turbulent flux Jφ, see Equation (  3.9 ) and does not need further treatment in
the primitive equations.

Clouds The cloud scheme in OpenIFS influences the thermodynamic and moisture equa-
tions. Equations (7.12) and (7.13) in ECMWF (  2014 , Part IV) specify this microphysics pa-
rameterization in more detail. As can be seen therein, the terms related to the cloud scheme
are purely local, i.e., they do not contain additional vertical derivatives. This means that
no (interface) boundary conditions are necessary for the cloud scheme. An explicit formu-
lation of the cloud scheme would significantly increase the complexity of the conservation
equations for temperature and humidity, without adding information related to coupling.
For this reason, we use Pq and PT in the OpenIFS equation set as a placeholder for the
impact of clouds.

Parameterizations for Near Surface Ocean Effects OpenIFS contains three additional
parameterizations near the sea surface which affect the temperature and humidity bound-
ary conditions (ECMWF,  2014 , Section IV.8.9). They capture the cool skin and warm layer
effect, as well as salinity effects on the saturation specific humidity qsat at the sea surface.
For our numerical experiments, we decided to turn off the warm layer effect, correspond-
ing to setting the parameter LEOCWA to FALSE. Since the vertical resolution of NEMO is
high enough to resolve the typical size of the warm layer (Fairall et al.,  1996 ), the warm
layer parameterization is not necessary in a coupled atmosphere-ocean simulation. 

10
 The

other two parameterizations correspond to multiplying the sea surface temperature and
humidity seen by the atmosphere in the vertical turbulent flux parameterization by scalar
factors. We do not need to adjust the primitive equations to incorporate these effects.

Model Discretization We use the OpenIFS-SCM with 60 vertical levels where the resolu-
tion decreases with higher altitudes (lower pressure). To compute the dynamic tendencies
in the primitive equations, we use the two-time-level semi-Lagrangian scheme in all ex-
periments (a Eulerian scheme is also available, cf. Hartung et al.,  2018 ). In general, the
time step size is shared by all parts of the model, except for the vertical turbulent fluxes,
which are computed twice per time step (ECMWF,  2014 , Chapter IV.3). The time step size
for the computationally intensive radiation scheme can be set independently.

10In fact, the warm layer effect parameterization is turned off for coupled simulations in later versions of the
IFS (ECMWF,  2021 , Part IV, p. 167).
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3. Overview of the EC-Earth AOSCM

3.2. NEMO

The primitive equations used in the one-dimensional setup of NEMO 3.6 are given in Har-
tung et al. ( 2018 ), Madec et al. ( 2017 ), and Reffray et al. ( 2015 ). We present a modified ver-
sion of the equations given therein to have a more consistent formulation for both ocean
and atmosphere.

In addition to the already mentioned assumptions for the primitive equations, given at
the beginning of this chapter, NEMO makes use of the Boussinesq hypothesis (i.e., den-
sity variations are neglected except in their contribution to the buoyancy force) and the
assumption of incompressibility. These simplify the continuity equation to ∇ · u = 0 =
∂xu + ∂yv + ∂zw, where u = (u, v, w)T is the velocity vector. In the single column model,
vanishing horizontal derivatives are assumed, and thus

∂

∂z
w = 0 (3.10)

remains as the continuity equation. With the boundary conditions of vanishing vertical
velocity at the sea surface and sea floor, i.e., w|z=0 = w|z=−H = 0, we thus obtain that the
vertical velocities in the NEMO single column model are zero everywhere.

The single column version of NEMO solves the 1D Navier-Stokes equations along with a
nonlinear equation of state (polyEOS80-bsq), ρ = ρ(θ, S, p), which couples the conservation
equations for the two tracers θ and S to the momentum equations.

∂u

∂t
= −1

ρ

∂

∂z
Ju +fv (3.11)

∂v

∂t
= −1

ρ

∂

∂z
Jv −fu (3.12)

∂θ

∂t
= −1

ρ

∂

∂z
Jθ +

1

ρrefcp

∂I(Qsr, z)

∂z
(3.13)

∂S

∂t
= −1

ρ

∂

∂z
JS (3.14)

The four oceanic prognostic variables are the horizontal velocity components u and v, the
potential temperature θ, and the practical salinity S. 

11
 As in Equations ( 3.2 ) to (  3.5 ), we use

∂zJφ to refer to the vertical turbulent transport of a conserved quantity φwhich can be one
of the four state variables. While ρ denotes density computed via the equation of state, the
constant ocean reference density ρref = 1035 kg m−3 is used in parts of the equation system.
I(Qsr, z) is the penetrative part of the solar surface heat flux, signifying solar heating of the
ocean near the sea surface due to the net short wave radiation from the atmosphere, Qsr.

11In contrast to the absolute temperature T , θ is the temperature a fluid parcel would have if it were raised
adiabatically to the sea surface (American Meteorological Society,  2022 ).
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3.3. Interface Boundary Conditions

As before, f is the Coriolis parameter.  

12
 

Both Reffray et al. ( 2015 ) and Hartung et al. ( 2018 ) include a term E−P in the salt conser-
vation equation, where E and P are the evaporation and precipitation fluxes, respectively.
However, these fluxes naturally only act at the sea surface as part of the salinity boundary
condition, cf. Equation ( 3.22 ). They do not affect the whole vertical column, as would be
implied by including them in the conservation equation, therefore we discard them here.

Physical Parameterizations Contrary to Hartung et al. ( 2018 ), we omit the terms for
physical parameterization Pφ. Three parameterizations are mentioned therein, all of which
we have moved into other terms:

• The mentioned turbulent kinetic energy-dependent eddy coefficient/”1.5 turbulent
closure” (Hartung et al.,  2018 , p. 4121) precisely refers to the parameterization used
to define the vertical turbulent flux Jφ, i.e., the turbulent closure scheme of NEMO.

• Similarly, the parameterization of Langmuir circulations is part of the turbulent clo-
sure scheme (Couvelard et al.,  2020 ).

• The effect of chlorophyll on heating is considered in the computation of the penetra-
tive solar surface heat flux I(Qsr, z) (Madec et al.,  2017 , Section 5.4.2).

Model Discretization We use NEMO in the configuration with 75 fixed vertical levels,
where the resolution is substantially higher near the ocean surface than towards the sea
floor (Madec et al.,  2017 , Section 4.3). The primitive equations are discretized using second-
order finite differences on a staggered grid, which is why, in the 1D configuration, NEMO
still uses 3 × 3 grid cells horizontally. Due to the vanishing horizontal derivatives in 1D,
these nine cells have identical values. Different time integration schemes are used for the
various terms in the primitive equations and we refer to the NEMO documentation for
more information (Madec et al.,  2017 ).

3.3. Interface Boundary Conditions

We now bridge the gap from the generalized atmosphere-ocean coupling problem in Sec-
tion  2.1 to the equations solved by the EC-Earth AOSCM. Equations ( 3.2 ) to ( 3.5 ) and Equa-
tions (  3.11 ) to ( 3.14 ) represent LatmUa = fatm and LoceU

o = foce, respectively. We do not
discuss the boundary conditions at the sea floor and top of atmosphere since these do not
play a significant role in atmosphere-ocean coupling. Viewing the problem as an example
of domain decomposition (the perspective of Chapter  2 ) brought about that we require a
continuity of air-sea fluxes across the model interface Γ. If we just consider the equations

12In comparison to Hartung et al. ( 2018 ), we have left out the nudging terms in the primitive equations as this
feature is not implemented in the current version of the model (Deppenmeier et al.,  2020 ).
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3. Overview of the EC-Earth AOSCM

seen in this chapter, the interface conditions are necessary to properly define all vertical
derivatives appearing in the primitive equations at the sea surface: Simply stated, for a
term of the form ∂z• = −ρg∂p•, the associated interface boundary condition provides a
value •|Γ. In the EC-Earth AOSCM such terms appear for all vertical turbulent fluxes Jφ,
the radiative fluxes FSW and FLW, and the solar surface heat flux I(Qsr, z). These should
be formulated in a way that ensures flux continuity across the sea surface Γ.

Although the primitive equations in the atmosphere are given with respect to pressure,
we switch back to the z-coordinate at the sea surface for consistency between both models.
For this section, we adopt the following notation: The z-coordinate is defined as positive
upwards, with the sea surface being located at z = 0. The lowest grid point in the atmo-
spheric grid is located at z ≈ 10m. We will refer to this point as z1. NEMO’s computational
grid begins directly at the surface, but the values of the state variables are actually com-
puted in the center of each grid cell (Madec et al.,  2017 , Chapter 4). Since the first ocean
grid cell has a length of 1m, the highest grid point in the ocean grid is located at z ≈ −0.5m,
which we will refer to as z−1. We distinguish atmospheric and oceanic quantities by the
superscripts a and o where necessary, as in Chapter  2 .

General Approach for Jφ As an interface condition, it should generally hold that

J aφ
∣∣
z=0

= J oφ
∣∣
z=0

. (3.15)

For the turbulent fluxes Jφ, we need to take into account five oceanic and atmospheric
state variables φ: the horizontal velocities u and v, temperature T , moisture q, and salinity
S. The fluxes for the first four are computed inside OpenIFS, using the EDMF scheme
introduced in Equation (  3.9 ). At the surface, the mass flux term M(φu − φ) is assumed to
be zero (ECMWF,  2014 , Section IV.3.1). Thus,

Jφ = ρKφ
∂φ

∂z
. (3.16)

The common approximation for Jφ|z=0 is based on a nonlinear bulk formula which, in its
simplest form, depends on the jump between both media

Jφ|z=0 = ρKφ
∂φ

∂z

∣∣∣∣
z=0

= ρCφ ‖ua(z1)− uo(z−1)‖ (φa(z1)− φo(z−1)) , (3.17)

with u = (u, v)T and Cφ the transfer coefficient, a scalar factor which nonlinearly depends
on, e.g., u and φ. 

13
 This type of equation stems from boundary layer theory for fluid

mechanics, central concepts used here are the law of the wall in general (Schlichting &
Gersten,  2017 ) and Monin-Obukhov similarity theory (Monin & Obukhov,  1954 ) for the

13In other works, e.g., Lemarié et al. ( 2014 ), Cφ is called exchange coefficient, which could lead to confusion
since this is also a name for Kφ (ECMWF,  2014 , Section IV.3).
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3.3. Interface Boundary Conditions

atmosphere in particular. 

14
 The nonlinear function Foa(Ua,Uo) we introduced in Chap-

ter  2 is an abstraction of Equation ( 3.17 ).
The bulk formulas solved in OpenIFS differ from Equation ( 3.17 ). For instance, the sur-

face currents in the ocean are not actually used in the computation of the turbulent fluxes,
i.e., it is assumed that uo(z−1) = 0. 

15
 The norm of the surface winds ‖ua(z1)‖ is replaced

with the wind speed

|U(z1)| =
√
‖ua(z1)‖22 + w2

∗, (3.18)

where w∗ is the free convection velocity scale which depends on atmospheric temperature
and moisture near the surface (ECMWF,  2014 , Part IV, p.36).

Horizontal velocities For Ju and Jv, the computations are combined into a vertical tur-
bulent momentum flux vector JM = ρaτ = (Ju,Jv)T . The vector τ is often called the
wind stress. The momentum flux at the surface is computed as follows:

JM |z=0 = ρaCM |U(z1)|2 ua(z1)

‖ua(z1)‖
, (3.19)

i.e., JM and ua(z1) are assumed to be collinear. 

16
 

Sensible and latent heat flux For the temperature and moisture boundary conditions,
the sensible and latent heat flux are computed. The sensible heat flux JT,a at the surface is
defined as

J aT |z=0 = ρacapCH |U(z1)| (T a(z1)− Tskin) , (3.20)

where Tskin is the skin temperature of the ocean. 

17
 For our purposes, we can consider this

to be equal to the sea surface temperature sent by NEMO, corresponding to the absolute
temperature on the highest model level: T o(z−1). 

18
 The conversion from potential tem-

perature θ to absolute temperature T happens inside NEMO before sending the values to
OpenIFS.

The latent heat flux Jq at the sea surface is computed as

Jq|z=0 = ρaCQ|U(z1)| (q(z1)− qsat(Tskin)) . (3.21)

14We note that To find Kφ∂zφ, an implicit equation has to be solved iteratively. For some of the quantities,
values from the previous time step are used. For example, Cφ depends on the Obukhov length L, which is
computed based on a friction velocity u∗ defined in terms of Jφ.

15Neglecting the ocean currents has implications on the stability and accuracy of the coupling scheme, cf.
Connors and Ganis ( 2011 ) and Renault et al. ( 2019 ).

16This is not explicitly stated but can be seen in ECMWF ( 2014 , Part IV, Equations 3.9, 3.10).
17For the sake of completeness, we mention that the parameterization for vertical turbulent fluxes uses the

specific heat capacity of dry air, i.e., cp = cpdry (ECMWF,  2014 , Section IV.3.1). In the radiation scheme and
the dynamical core, cp = cpmoist .

18To be precise, OpenIFS slightly modifies the value received by NEMO in the cool skin parameterization
(ECMWF,  2014 , Section IV.8.9).
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3. Overview of the EC-Earth AOSCM

The saturation humidity at the surface qsat is again defined in terms of skin temperature.
The computation of qsat is affected by the salinity effect parameterization mentioned at the
end of Section  3.1 .

Salinity flux The boundary condition for the salinity flux is computed in NEMO as:

JS |z=0 = (E − P) · S(z−1), (3.22)

where P and E are the precipitation and evaporation fluxes computed in OpenIFS. This
boundary condition incorporates the salinity change due to freshwater influx and outflux
at the sea surface into a virtual salt flux across the interface. 

19
 This ensures salt conservation

while keeping vertical velocities equal to zero at the sea surface. More information on this
boundary condition can be found in (Huang,  1993 ), where it is referred to as the mixed
boundary condition for the salinity balance.

Solar surface heat flux For the term ∂zI(Qsr, z) in NEMO’s thermodynamic equation,
eq. ( 3.13 ), OpenIFS has to provide the net shortwave radiation at the sea surface. The ra-
diative fluxes in OpenIFS are computed at ”half-levels”, where the lowest one corresponds
to surface pressure, i.e., z = 0m. Thus,

Qsr = (1− α) FSW|z=0 , (3.23)

where α denotes the albedo of the ocean surface.

Radiation boundary condition The boundary conditions used for the radiation scheme
in the EC-Earth AOSCM are, to our knowledge, not documented. The ocean is not a source
of shortwave radiation but impacts it depending on the surface albedo (which determines
how much atmospheric shortwave radiation is reflected). In ice-free conditions, NEMO
does not provide albedo values to OpenIFS. On the other hand, OpenIFS provides the net
shortwave radiation to NEMO. Thus, we can safely assume that OpenIFS computes its
own boundary condition for FSW based on an internal value for the ocean surface albedo.

As a large body with thermal energy, the ocean acts as a source of longwave radiation
FLW for the atmosphere. While this is not clearly stated in the IFS documentation or the
AOSCM code, we assume that the boundary condition for FLW|z=0 considers the ocean as
a black body σT 4

skin, where σ denotes the Stefan-Boltzmann constant.

Synthesis Although the interface conditions between ocean and atmosphere could be
treated by a third component, most of the boundary conditions needed by both models
are computed in OpenIFS, i.e., the atmosphere model. The momentum flux JM |z=0 =

19In comparison to Hartung et al. (  2018 ), we have omitted St in the salinity boundary condition: The rate of
change of the sea ice thickness budget St is zero in ice-free simulations.
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3.3. Interface Boundary Conditions

(Ju|z=0 , Jv|z=0)T is computed by taking into account only the surface wind, not the ocean
currents. The resulting flux is used as a boundary condition in both models:

Ju|z=0 = ρoKo
u

∂uo

∂z

∣∣∣∣
z=0

= ρaKa
u

∂ua

∂z

∣∣∣∣
z=0

= ρaCM |U(z1)|2 ua(z1)

‖ua(z1)‖
(3.24)

Jv|z=0 = ρoKo
v

∂vo

∂z

∣∣∣∣
z=0

= ρaKa
v

∂va

∂z

∣∣∣∣
z=0

= ρaCM |U(z1)|2 va(z1)

‖ua(z1)‖
. (3.25)

For the temperature boundary condition in the atmosphere, the sensible heat flux J aT |z=0
is computed in OpenIFS. For moisture q, the latent heat flux Jq|z=0 is used. We cannot use
the same boundary condition for ocean temperature as in the atmosphere: The turbulent
flux of temperature in the ocean is affected by the sensible and latent heat fluxes, but also
by the net longwave radiation. These are summarized into a non-solar heat fluxQns which
is accumulated in OpenIFS and sent to NEMO:

Qns = J aT |z=0 + Jq|z=0 + FLW|z=0 − σT
4
skin. (3.26)

Thus we arrive at the following interface boundary conditions for the vertical turbulent
temperature and moisture fluxes:

J aT |z=0 = ρacapK
a
T

∂T a

∂z

∣∣∣∣
z=0

= ρacapCH |U(z1)| (T a(z1)− Tskin) (3.27)

J oT |z=0 = ρocopK
o
T

∂T o

∂z

∣∣∣∣
z=0

= Qns (3.28)

Jq|z=0 = ρaKa
q

∂q

∂z

∣∣∣∣
z=0

= ρaCQ|U(z1)| (q(z1)− qsat(Tskin)) . (3.29)

For radiative fluxes, OpenIFS uses an internally defined boundary condition based on Tskin

and the ocean surface albedo. Evaporation E , precipitationP , and net short wave radiation
Qsr are sent from OpenIFS to NEMO to complete the boundary conditions for the vertical
turbulent transport of salinity and penetrative solar radiation (Equations  3.22 and  3.23 ).  

20
 

Figure  3.1 summarizes the variables which are exchanged between the models in order to
compute the interface boundary conditions CatmUa and CoceU

o. 

21
 

20These interface conditions cannot simply be classified in terms of Dirichlet, Neumann, or Robin boundary
conditions. We do not go into detail here but have included a short discussion in Appendix  A.2 .

21In Hartung et al. ( 2018 ), it was stated that an additional variable, the temperature sensitivity of non-solar
heat fluxes, is sent from OpenIFS to NEMO. In fact, this variable is only relevant for areas with ice, i.e., for
the sea ice model LIM which we do not consider here.
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3. Overview of the EC-Earth AOSCM

OpenIFS

NEMO

Ju,Jv
Qns

Qsr

E ,P

Tskin

Figure 3.1.: Overview of exchanged data between OpenIFS and NEMO during a coupled
run of the EC-Earth AOSCM.

3.4. Coupling with OASIS

OpenIFS and NEMO are coupled with the OASIS3-MCT coupling software, which we will
refer to as OASIS. Detailed information on this tool can be found in the corresponding pa-
pers (Craig et al.,  2017 ; Valcke,  2013 ) and the user guide (Valcke et al.,  2015 ). We give a short
overview of some fundamental concepts in OASIS in Appendix  A.3 . The OASIS coupler
takes care of communicating data between model components and can, in that process,
apply various transformations to the coupling fields. This includes taking time averages
and regridding data using interpolation or various other techniques to map non-matching
grids onto each other. OASIS is designed to take care of these tasks while ensuring high
computational performance and minimizing the error introduced by transformations. In
addition to communication, it supports I/O of variables defined by each model compo-
nent.

From a technical standpoint, the model components call the OASIS library to instantiate
and finalize the coupler, declare coupling fields, and trigger communication. These calls
are part of the model code and changes here (e.g., adding new coupling fields) necessitate
recompilation of the EC-Earth AOSCM. During a coupled run, OASIS decides whether
data has to be sent at a given model time step, based on user input provided in a con-
figuration file, the namcouple. Significant aspects of the coupling setup can be changed at
runtime using this file, including the coupling window size and transformation options.
Overall, essential parts of the coupling logic are transparent to the model components.

The algorithm used by default in the EC-Earth AOSCM is the parallel algorithm de-
scribed in Section  2.2 . As NEMO uses a 3 × 3 grid, whereas OpenIFS uses a 1 × 1 grid,
OASIS also takes care of remapping the interface values onto each other. From NEMO to
OpenIFS, only the value in the center of the grid is sent to OpenIFS. Vice versa, the single
value supplied by OpenIFS is broadcast to all nine grid points of the NEMO grid.
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4. Implementation

The EC-Earth AOSCM uses the parallel algorithm described in Section  2.2 as a coupling
scheme. In the context of this master’s thesis, we want to test the impact of more advanced
coupling algorithms on the numerical solution produced by the model. Namely, the goal
is to support both the sequential atmosphere-first and ocean-first algorithms, as well as
Schwarz waveform relaxation (SWR). Regarding SWR, the goal is to support the iterative
version of the three non-iterative coupling schemes, i.e., exchange the average of the inter-
face values over one coupling window. Based on this, more advanced versions of Schwarz
waveform relaxation can be implemented, as we will discuss in Section  6.2 .

The AOSCM is based on the Earth system model EC-Earth 3, thus a lot of the implemen-
tation challenges of Schwarz waveform relaxation already appear in the single column
model. The model components of the EC-Earth AOSCM are large Fortran codes, contin-
uously and independently developed by different research groups. Our implementation
is for the most part independent of the model components, OpenIFS and NEMO. We treat
them as black boxes as much as possible to be minimally invasive, cf. the discussion in
Gatzhammer ( 2014 , Chapter 3). Instead, we base our SWR implementation on concepts of
the OASIS coupler and on the typical workflow when using climate models coupled with
OASIS: Runtime configuration scripts determine settings for the compiled model binaries
and the simulation output is stored at a predetermined destination with a known file struc-
ture. We hope that this approach allows developers of other climate models to reuse ideas
of our implementation.

Our solution allows model users to choose coupling schemes at runtime, not compile
time, similar to other simulation settings like simulation length, time step size, vertical
resolution, etc. Especially considering the size and complexity of the source code, this is a
far more user-friendly approach than requiring an in-code change and recompilation.

In this chapter, we give an overview of the implementation aspects relevant to sup-
port different coupling schemes for the EC-Earth AOSCM. We restrict ourselves to a broad
overview of the necessary changes, while technical notes and examples are given in the
appendix. The chapter starts with a short description how sequential algorithms can be
supported for a model coupled using the OASIS3-MCT coupler. We continue with a de-
scription of our SWR implementation in Section  4.2 . In Section  4.3 we tackle the question
of suitable convergence criteria for the Schwarz iterations.
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4. Implementation

4.1. Sequential Coupling Algorithms

Whether an AOSCM experiment uses the parallel algorithm or one of the sequential ones
described in Section  2.2.2 can be controlled using a configuration file for OASIS, the nam-
couple. More specifically, one has to change the LAG parameters provided therein. This
was previously mentioned and utilized in Marti et al. ( 2021 ) and Streffing et al. ( 2022 ). In
Appendix  A.4 , we explain how to set parameters based on the desired coupling scheme.

Users of the AOSCM do not adapt the namcouple directly, but use an XML file to set
simulation parameters. There is no reason to deviate from the workflow for this feature,
thus we have simply implemented a new XML parameter for OASIS where users can set
the coupling scheme to an integer value. The default value is 0 and represents the parallel
algorithm. 1 and 2 denote the sequential atmosphere-first and ocean-first coupling scheme,
respectively. In case a user chooses a different value, the program aborts with an error
explaining which parameter in the XML to adapt. This provides additional functionality
to users while keeping the added complexity minimal, similar to adding a toggle for a
physical parameterization scheme.

4.2. Schwarz Waveform Relaxation

Preceding the work in this thesis, there have been two implementations of Schwarz wave-
form relaxation in coupled Earth system models, both of which use OASIS as coupling
software. Marti et al. ( 2021 ) adapted the IPSL-CM6 model, a three-dimensional coupled
general circulation model. To support Schwarz waveform relaxation, the time loops of
the ocean and atmosphere model were extended. The resulting algorithm uses a constant
number of iterations for each Schwarz window. The Schwarz window size can be adjusted
to span a single coupling window, multiple coupling windows, or even the full simulation
time. As gets clear from the published code, this implementation is not model-agnostic
and requires significant adjustments in each component.

The EC-Earth AOSCM uses the same ocean and sea-ice component as IPSL-CM6 (NEMO
and LIM/SI3) but a different atmosphere model. Reusing the approach of Marti et al.
( 2021 ) would thus require a significant amount of implementation work which would have
to be repeated each time a component of the EC-Earth AOSCM is updated.

A second implementation approach was developed as part of the COCOA project, al-
though it has not been published at this point. As described in the project report (Val-
cke,  2021 ), Schwarz waveform relaxation was tested for the single column version of the
CNRM-CM6 model. In this approach, OASIS itself is utilized to support repeated evalu-
ations of the same time interval. For this reason, no significant adjustments of the model
code are required. Instead, the runtime settings of OASIS are adapted using external
scripts which take control of executing Schwarz iterations. Since OASIS is used by ”more
than 35 different climate modeling groups around the world” (Valcke,  2013 , p. 374), bas-
ing the implementation on OASIS concepts might lead to easier reuse of different coupling
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4.2. Schwarz Waveform Relaxation

approaches than coming up with an implementation based on OpenIFS and NEMO.
The approach is significantly simpler to implement and less dependent on the under-

lying model components. It works as follows: The first Schwarz iteration is equivalent
to a regular coupled AOSCM run, with the same available settings (including switching
between the parallel or one of the sequential algorithms). During the simulation, OASIS
saves the values of the interface variables at every coupling time step to an output file.

At t0 of the second Schwarz iteration, the model components read in the coupling fields
previously exchanged at t1, using the output file saved by OASIS. 

1
 Generally in the second

iteration at a coupling time step tn, the models read in the values sent at tn+1 during the
first iteration. Recalling the parallel algorithm (Figure  2.3 ), this reduces the coupling lag:
The values exchanged at a coupling time step tn in the parallel algorithm represent the
average of the respective coupling variable over the interval [tn−1, tn]. By shifting the
coupling data in time, we reduce the time shift and re-synchronize the air-sea fluxes seen
by the model, as described in Section  2.3 . Interface data computed during the second
iteration is not directly sent from one component to the other. Instead, it is once again
written out to a file, for use during the next iteration. This way, model components still
run in parallel and are controlled by OASIS, but they do not directly exchange data during
any iteration except for the first one. Information flows between the iterations, as seen in
Figure  2.5 .

In the SWR implementation by Marti et al. ( 2021 ), the model executable contains the
full logic for doing Schwarz iterations, since this functionality is fundamentally part of
the model code. By contrast, the approach by Valcke ( 2021 ), which we adopt here, keeps
the Schwarz algorithm separate from the model code. Doing an SWR experiment thus
implies running the model executable multiple times with different configuration settings.
Each time the compiled model is executed, a single Schwarz iteration is done. In between
the iterations, an outer layer written in Python is responsible for controlling the Schwarz
algorithm. This includes the following tasks:

• Select the correct OASIS configuration file (see Appendix  A.5 for an example illus-
trating the differences in configuration files between the first and later Schwarz iter-
ations).

• Shift the time stamps of the OASIS output files to read them in correctly in the next
iteration.

• Remap the coupling variables from the 1 × 1 OpenIFS grid to the 3 × 3 NEMO grid
and vice versa. This is a task that OASIS can take care of directly when communi-
cating data between components. However, OASIS does not support regridding or
remapping when coupling fields are only read in or written out (Valcke et al.,  2015 ,
pp. 31–32).

1We use the same notation for time steps as in Chapter  2 : tn = n ·∆t is the n-th coupling time step, and ∆t
is the length of a coupling period.
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• Rename model output directories to avoid name clashes in subsequent iterations.

• Decide whether to continue iterating based on some criterion (see Section  4.3 ).

The functionality of the outer layer can also be extended to include other features which
are not part of the basic Schwarz algorithm described in Section  2.3 . In the current imple-
mentation, we use the Python wrapper to also reduce the amount of model output and
store general information about the experiment. In addition, one could use it to test accel-
eration methods for SWR, examples being dynamic Aitken or Quasi-Newton approaches
(Gatzhammer,  2014 ; Rüth et al.,  2021 ).

In our implementation, OpenIFS and NEMO only exchange interface data averaged over
one coupling period, instead of higher-order interpolants of the coupling variables. In Sec-
tion  6.2 , we discuss to what extent a more accurate approximation of the true flux could be
exchanged with the implementation idea we use in this thesis. The implemented solution
is equivalent to Schwarz waveform relaxation with piecewise constant interface data aver-
aged over each coupling period ∆t. The Schwarz window size is equal to the simulation
time. If the parallel algorithm is chosen in the first iteration, the iterations are equivalent
to an additive Schwarz method. If a sequential coupling scheme is used in the first itera-
tion, the subsequent iterations are equivalent to those of a multiplicative Schwarz method,
albeit one which is inefficiently implemented. See Appendix  A.6 for an explanation of
this latter observation. We have checked for example simulations that the converged SWR
solutions do not differ between the multiplicative and additive SWR method.

Because the simulation time determines the Schwarz window size, more iterations are
necessary for convergence when doing longer simulations. If the algorithm converges,
it yields the same solution as an SWR implementation where the Schwarz window size
is chosen equal to the coupling period: The output at time t depends only on previous
model time steps, prescribed forcing, and the interface conditions. Thus, if the coupling
time step sizes are equal, [t0, t1] produces the exact same iterations, no matter the size of
the Schwarz window. 

2
 The converged result of [t0, t1] propagates to later time steps, which

is equivalent to first iterating over [t0, t1] until convergence, then continuing with [t1, t2],
etc.

In summary, we have implemented basic Schwarz waveform relaxation as described
in Section  2.3 with minimal overhead and while treating OpenIFS and NEMO as black
boxes, except for manually remapping the two grids between iterations. The functionality
is available at runtime, easily extensible and, if necessary, reversible.

2This is also a way to verify our implementation: We have confirmed that the model output during the first
coupling window is exactly equal in every Schwarz iteration, independent of the simulation length, i.e., the
Schwarz window size. This is not the case for later coupling windows until the iterations have converged.
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4.3. SWR Convergence Criteria

4.3. SWR Convergence Criteria

For the single column model, the computational effort is low enough to do a fixed ”large”
number of iterations which ensures that the Schwarz method will have converged by the
end. Nevertheless, we would like to use a runtime convergence estimator to save compu-
tational resources and as a case study for other coupled climate models. We connect con-
vergence criteria previously used in the context of atmosphere-ocean coupling (Lemarié
et al.,  2014 ; Marti et al.,  2021 ; Valcke,  2021 ) with those used in other multiphysics coupling
libraries (e.g., Mehl et al.,  2016 ; Rüth et al.,  2021 )

4.3.1. Variables Included in Error Estimates

To measure convergence, we only use variables exchanged at the coupling interface, simi-
lar to other implementations of SWR (Rüth et al.,  2021 ). We take into account all interface
data already exposed to OASIS, i.e., the variables depicted in Figure  3.1 , averaged over
each coupling window.

Marti et al. ( 2021 ) only take into account the sea surface temperature, since that is the
only coupling variable sent by the ocean to the atmosphere. They motivate this by stating
that, as soon as the SST converges, the atmosphere ”by construction computes the same
fluxes” (Marti et al.,  2021 , p. 2972) in each iteration. This argument holds especially when
the changes of the coupling variable across iterations are very small, e.g., at a magnitude
near machine precision. However, Marti et al. ( 2021 ) used convergence tolerances based
on whether differences are physically negligible or not. It is unclear a priori whether a
physically negligible change in SST might cause (or be caused by) a non-negligible change
of, e.g, wind stress or atmospheric heat fluxes. In this case, it is a safer choice to include
more variables in computing a convergence criterion.

As soon as the ocean model sends more coupling fields than just sea surface tempera-
ture (e.g., surface currents or sea-ice-related quantities), it is not sufficient to restrict con-
vergence analysis to an SST-based criterion. In our implementation, we use all variables
which are part of the OASIS namcouple. This covers cases with more sophisticated coupling
setups as well and is, in principle, model-agnostic.

Valcke ( 2021 ) used other output variables besides the coupling fields to estimate conver-
gence, e.g., temperature or velocity further away from the air-sea interface. This requires
looking at model output data (instead of OASIS output data) or reading the values directly
from inside the model. The latter choice would mean code changes inside the AOSCM
components, which we want to avoid. The former has another restriction in the case of
the EC-Earth AOSCM: While both NEMO and OpenIFS use double precision internally
and during coupling, the model output is restricted to single precision. This can lead to
an error estimate which is different than one based on the internal model state. Finally, a
computation based only on coupling fields can be carried over more easily to a 3D model.
There, reading in full model output files is significantly more costly than the comparably
small 2D coupling fields.
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4.3.2. Amplitude-Based Convergence Estimate

The first convergence criterion we implement is similar to the one discussed by Valcke
( 2021 ): For each coupling variable c, we compute the maximum absolute difference be-
tween two subsequent iterations, i.e., the discrete maximum norm. We consider ck ∈ RN
to be the vector of coupling values of iteration k. It has dimension N , equal to the number
of coupling windows in the simulation. The maximum absolute difference is thus given
by:

‖ck+1 − ck‖∞ = max
n∈{0,...,N−1}

(|ck+1
n − ckn|) (4.1)

We compare this difference to the spread of the coupling variable over the Schwarz win-
dow. Since our numerical experiments are on the order of days and the Schwarz window
is equal to the simulation length, this is an estimate of the diurnal cycle of the coupling
variable. We compute the amplitude A as

A(ck+1) = max
n∈{0,...,N−1}

ck+1
n − min

n∈{0,...,N−1}
ck+1
n . (4.2)

Note that we estimate the spread using iteration k + 1 instead of k. This is a somewhat
arbitrary choice; we assume that iteration k+1 is closer to the converged Schwarz solution
and thus gives a more realistic value for the amplitude of c.

We consider an iteration k to have converged if

‖ck+1 − ck‖∞ ≤ TOL · A(ck+1), (4.3)

is fulfilled for all coupling variables c (cf. Figure  3.1 ). Here, TOL > 0 is a fixed tolerance
which we choose as TOL = 10−3 to signify a physically negligible Schwarz correction.

We can use previously published AOSCM results (Hartung et al.,  2018 , Figure 7) to give
expected value ranges for the convergence threshold: For sea surface temperature, we see
diurnal cycles on the order of 0.1 K to 1 K, giving a convergence threshold of 10−4 K to 10−3

K. For surface shortwave radiation, we see daily amplitudes on the order of 102 Wm−2 to
103 Wm−2. Thus, the convergence tolerance for shortwave radiation will be between 0.1
Wm−2 and 1 Wm−2.

4.3.3. Local Convergence Estimate

As stated by Valcke ( 2021 , p. 15), “variables having a marked amplitude of the diurnal
cycle will appear as converging more easily” with the above method than those which
change very little over the course of a simulation. In addition to this, we have assumed in
Equation ( 4.3 ) that the full simulation data (or at least one full day of simulation data) is
available when computing the convergence threshold. This is fine in our case because the
Schwarz window is equal to the length of the full simulation, and because the numerical
experiments we conduct span multiple days.
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However, to achieve faster convergence of the iterations, shorter Schwarz windows are
preferable. In other coupling libraries such as preCICE, the Schwarz window is typically
equal to the coupling window (Rüth et al.,  2021 ). In this case, A(ck) is much smaller than
the amplitude of the diurnal cycle (typical sizes for coupling windows are between 1h and
3h). Alternatively, one could prescribe typical amplitudes for each variable, which comes
with its own set of difficulties.

For these reasons, we propose a second criterion which is not based on the amplitude
of the coupling variable but its magnitude in each coupling window. For each coupling
variable c and every coupling time step tn with n = 0, . . . , N − 1 it must hold that∣∣∣ck+1

n − ckn
∣∣∣ ≤ TOL ·

∣∣∣ck+1
n

∣∣∣ . (4.4)

Again, TOL > 0 is a tolerance which we choose equal to 10−3 in the following numerical
experiments.

Returning to numerical examples from Hartung et al. ( 2018 , Figure 7), a typical SST
value is around 280 K, thus the difference between iterations would have to be below
roughly 0.3 K. 

3
 For shortwave solar radiation, the criterion is dynamically adjusting: Near

the peak of solar radiation, the upper bound is similar as in the amplitude-based criterion
(between 0.1 Wm−2 and 1 Wm−2). At night, solar surface radiation is close to 0, thus the
convergence bound will be significantly stricter.

Equation ( 4.4 ) is simple to use in a setup where the Schwarz window size is equal to
the coupling window size: Instead of checking Equation ( 4.4 ) for the full vector ck, one
only estimates the error at the current time step tn before moving on to the next coupling
window. In that sense, it only depends on information which is available locally in time,
whereas Equation ( 4.3 ) is based on global-in-time information.

In total, we would expect the two convergence criteria to give comparable results, while
small differences in the resulting amount of iterations might stem from different magni-
tudes and diurnal cycles of a coupling variable.

4.3.4. Comparison with the Final Iterate

Both Marti et al. ( 2021 ) and Lemarié et al. ( 2014 ) do not compare subsequent iterations.
Instead, they compute the error of an iterate ck with respect to a final iteration cM , with
M > k and the assumption that M is large enough to be the converged Schwarz solution.
We can adapt Equation ( 4.3 ) and Equation ( 4.4 ) to follow a similar approach, resulting in

‖ck+1 − cM‖∞ ≤ TOL · A(cM ), (4.5)∣∣∣ck+1
n − cMn

∣∣∣ ≤ TOL ·
∣∣cMn ∣∣ . (4.6)

3The sea surface temperature is converted to Kelvin before sending it to OpenIFS although NEMO uses °C
otherwise.
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4. Implementation

As before, we check these criteria for each coupling variable exchanged between OpenIFS
and NEMO, taking into account every coupling time step t0, . . . , tN−1. We use the com-
parison with the final iterate to test whether Equation ( 4.3 ) and Equation ( 4.4 ) are good
runtime estimators for SWR convergence in Section  5.1.3 .
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5. Numerical Experiments

In this chapter, we investigate the impact of different coupling algorithms on the numerical
solution produced by the EC-Earth AOSCM. As a test case, we place the single column
model at the PAPA station in the Northeastern Pacific Ocean (50.033°N, 145.205°W). This
location was also studied in Hartung et al. ( 2018 ) and is a standard example in the context
of climate and weather model development.

We use reanalysis data for the initial conditions and atmospheric forcing. For the ocean,
we obtained initial data from the GLORYS12V1 data set by the Copernicus Marine and
Environment Monitoring Service (CMEMS), which contains daily averages in NetCDF for-
mat. 

1
 We extracted data at the grid cell closest to the PAPA station (50°N, 145°W) and

linearly interpolated it from 50 to 75 vertical levels. Using this data set kept the amount of
preprocessing minimal while ensuring realistic initial conditions. For OpenIFS, we use an
input file based on the ERA-Interim data set (Dee et al.,  2011 ), with six-hourly data from
00:00 on July 1 to 18:00 on July 30, 2014 (UTC). At the time of writing, no other input data
for the atmosphere was obtainable, something we will get back to in Chapter  6 . Because
of the available initial data, we restrict ourselves to multi-day simulations in July 2014 at
the PAPA station. The local time zone at the station during this time of the year is Pacific
Daylight Time (PDT), seven hours behind UTC. In all plots of this chapter, we show output
data after applying a time shift of -7h.

We study two numerical experiments in this chapter: The control experiment in Sec-
tion  5.1 is a single four-day simulation for which we examine the mechanisms at play
when switching the coupling algorithm. In Section  5.1.3 , we compare the performance of
different SWR convergence criteria in the control experiment. As a second experiment, we
compare 1,248 two-day simulations with the AOSCM to get statistical insight into the im-
pact of coupling schemes on a typical weather forecast. The setup and results of this case
study are detailed in Section  5.2 .

5.1. Control Experiment: Qualitative Comparison of Coupling
Schemes

For the control experiment, we use the same time step sizes as in two previous studies with
the AOSCM, Deppenmeier et al. (  2020 ) and Hartung et al. (  2018 ): ∆tatm = ∆toce = 15 min
for both OpenIFS and NEMO. Due to the considerations in Lemarié et al. ( 2014 ), we choose

1
 https://doi.org/10.48670/moi-00021  
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5. Numerical Experiments

a coupling period larger than the model time step size: ∆tcpl = 1 h. We use the forcing
and initial data described above to do a four-day simulation at the PAPA station, from July
1, 2014 at 00:00 until July 5, 2014 at 00:00 (UTC), resulting in a local simulation time from
June 30 at 17:00 until July 4 at 17:00.

With this setup, we compare the parallel algorithm and the two sequential algorithms
with the converged SWR solution. In this first experiment, we do twenty Schwarz itera-
tions to test the convergence criteria discussed in Section  4.3 . The output data of iterations
13 until 20 is exactly equal up to the floating-point precision of the output files. 

2
 Thus, we

can safely consider iteration 20 to be the converged SWR result. As described in Chapter  2 ,
the non-iterative coupling algorithms are the first iteration of an additive/multiplicative
SWR method. We therefore consider them approximations to the converged SWR result,
which takes on the role of a reference simulation.

We spend the first parts of this section to present an in-depth comparison of model
results for this experiment. In Section  5.1.3 , we use the Schwarz iterations produced during
the experiment to compare the convergence criteria presented in Section  4.3 .

5.1.1. Prognostic Variables

For both models, we show the prognostic variables over time at the model level closest
to the air-sea interface. Figure  5.1a contains the prognostic variables of NEMO: the zonal
current u, meridional current v, the temperature T , and the salinity S. The level closest to
the surface is at a height of z−1 ≈ −0.5 m. In NEMO it is assumed that these values are
constant up to the surface. In particular, sea surface temperature (SST) is defined as

SST = T o(z−1).

For the ocean variables, all four coupling schemes result in a similar overall behavior.
This is most striking for the salinity S, where differences become visible only near the
end of the simulation. Here, the parallel and ocean-first coupling scheme result in a slight
phase shift compared to the atmosphere-first and converged SWR solution. Such a phase
shift also appears for the other ocean variables.

The ocean surface currents u and v are relatively weak throughout the simulation, on the
order of 0.1 m/s. For these variables, differences between the coupling schemes are visible
throughout the full simulation, although their absolute value is fairly small (on the order
of 0.01 m/s). The error in the parallel and ocean-first case is more prominent in amplitude
compared to the atmosphere-first coupling scheme. Combined with the phase shift, this
makes them appear to be a worse candidate than the atmosphere-first algorithm.

We can draw similar conclusions from the sea surface temperature evolution: Here, the
difference between coupling schemes seems to increase over time, reaching a magnitude
of 0.1 °C around days two and three of the simulation.

2Note that the model results are written out in single precision while the AOSCM internally uses double
precision.
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(a) Prognostic variables of NEMO at the highest model level (z−1 ≈ −0.5 m).
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(b) Prognostic variables of OpenIFS at the lowest model level (z1 ≈ 11.9 m).

Figure 5.1.: Prognostic variables of the AOSCM during the control experiment.

35



5. Numerical Experiments

Judging only from the oceanic results, all coupling schemes give similar results while
the atmosphere-first algorithm reduces the phase error and is thus the best of the non-
iterative coupling algorithms. This plays an even bigger role when increasing the size of
the coupling period, as was previously seen by Marti et al. ( 2021 ) and Voldoire et al. ( 2022 ).
We have confirmed their results for a coupling period of ∆tcpl = 4 h but do not include
them here.

Figure  5.1b shows the prognostic variables of OpenIFS: the zonal and meridional wind
speeds (u and v in the OpenIFS primitive equations), temperature T , and moisture q. In the
OpenIFS-SCM, the lowest model level (level 60) does not correspond to a constant height
but to a constant pressure level, equal to 1012.15 hPa in the control experiment. Over the
course of the simulation, this corresponds to a height of z1 ≈ 11.9 m (with a standard
deviation below 3 cm).

The horizontal wind speeds are significantly larger in magnitude than the surface cur-
rents, reaching up to about 10 m/s. Slight differences are visible between the coupling
algorithms, on the order of 0.1 to 1 m/s. Note that this is a similar relative difference as for
the ocean surface currents (about 10%).

The output for T and q shows significant differences between the coupling schemes,
starting on July 2. For temperature, the non-iterative coupling schemes produce solutions
which are different from the converged SWR solution by a full degree Celsius in magni-
tude. In both variables, the two sequential algorithms perform worse than the parallel
algorithm at daytime during July 2. Around 00:00 on July 3 for temperature, the paral-
lel algorithm ”detaches” from the SWR trajectory and behaves more like the sequential
algorithms. At the end, the error of the parallel algorithm is even larger than that of the
sequential atmosphere-first and ocean-first coupling schemes. A similar result can be seen
for moisture, although the parallel algorithm stays close to the SWR result for longer, until
July 3 around noon.

As seen in Figure  5.1a , the differences in SST are relatively small, while the resulting
spread of atmospheric temperature is a lot more significant. The origins for this phe-
nomenon lie in the parameterizations for atmospheric thermodynamics, which we proceed
to investigate using additional output data of the OpenIFS single column model.

5.1.2. Behavior of Atmospheric Thermodynamics

We start off with the surface heat fluxes computed by OpenIFS. These play an important
role in the coupling conditions, particularly for temperature and moisture, cf. Section  3.3 .
The surface sensible and latent heat fluxes, shown in panels a) and b) of Figure  5.2 show
a similar pattern as temperature and moisture itself: Around July 2, the two sequential
coupling schemes behave very differently than the converged SWR solution. While the
parallel scheme performs better initially, it joins the other non-iterative solutions towards
the end of the simulation. This happens first for the sensible heat flux (which is related
to temperature), and then on July 4 for the latent heat flux (which is related to moisture).
Notably, all four coupling schemes produce similar results around noon of July 3.
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Figure 5.2.: Atmospheric surface heat fluxes in the control experiment for all four coupling
schemes over time. The top row shows the sensible and latent heat fluxes,
JT and Jq, the bottom row shows net shortwave and longwave radiation, as
defined in Section  3.3 .

The surface radiation, cf. panels c) and d) of Figure  5.2 , reveals more information on
the differences on July 2: While all coupling schemes behave very similarly for most of the
simulation, the sequential algorithms produce visibly different radiative fluxes around this
time. For shortwave radiation, they give fluxes which are approximately 200 W/m2 lower
than the parallel and converged SWR solution. The net longwave radiation, on the other
hand, is up to 100 W/m2 higher for the sequential algorithms. The sea surface temperature
does not show strong differences at this point of the simulation, see Figure  5.1a , thus this
change is caused by the radiation scheme itself, not by ocean longwave radiation.

These results re-emphasize that the atmospheric thermodynamics react significantly to
the comparatively small change in sea surface temperature, depending on the coupling
algorithm. However, the question remains what triggers such a strong response. We found
an answer to this by looking at the boundary layer type used inside OpenIFS to switch
between different formulations for vertical turbulence.
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5. Numerical Experiments

As described by Fitch ( 2022 ), OpenIFS distinguishes four types of atmospheric boundary
layers which determine the type of turbulence closure used by the model (i.e., how to
approximate w′φ′ for the prognostic variables φ). Possible states are dry stable (DS), dry
convective (DC), a boundary layer topped by stratocumulus clouds (Sc), or one topped by
shallow cumulus clouds (Cu). While a first-order purely diffusive turbulence closure is
used for the dry stable boundary layer, the other three cases yield different variants of an
EDMF scheme. In panel a) of Figure  5.3 , we show the boundary layer type over time for
all four coupling schemes in the control experiment.

While the simulation starts off with a dry stable atmosphere, all four coupling schemes
switch to an unstable boundary layer around 12:00 on July 1. The boundary layer type re-
mains unstable until the end of the simulation and all four coupling schemes end up with a
stratocumulus-topped boundary layer around July 3. However, in the time between these
two regimes, very different patterns emerge depending on the coupling algorithm. We first
note that even in the converged SWR solution, the boundary layer type can change very
often in short time intervals. For instance, the model switches between all three unstable
boundary layer types around 12:30 on July 1. Since the boundary layer type is determined
in each model time step using only instantaneous information, rapid changes of the cho-
sen type can occur. There is no incentive for this parameterization to converge to a more
”continuous” behavior, i.e., one which avoids individual time steps which use a different
turbulence scheme than the model time steps before or after.

In general, we see a similar pattern emerge as in the previous plots: In the control exper-
iment, the parallel scheme seems to be the most successful at obtaining a similar boundary
layer type as Schwarz waveform relaxation. The atmosphere-first and ocean-first algo-
rithms result in the same boundary layer type for most of the simulation. Particularly,
they spend a longer time in the cumulus-topped regime and switch to the stratocumulus-
topped boundary layer earlier than the other two algorithms. The parallel and SWR solu-
tion, on the other hand, result in a dry convective boundary layer for more time steps.

We can also study how often the boundary layer type of a given model time step changes
between two Schwarz iterations, see panel b) of Figure  5.3 . This is another indicator for
the sensitivity of this parameterization to slight changes of interface conditions due to
Schwarz corrections. Recall that we do 20 Schwarz iterations in total, while the numerical
solution stops changing after iteration 13. In the same regime as seen above, between July
1 at 12:00 and July 3 at 00:00, the boundary layer type switches the most often, with a
maximum of five changes. Comparing the two plots, we can conclude that the boundary
layer type changes across Schwarz iterations are particularly low whenever all three non-
iterative methods yield the same type. Changes of boundary layer type occur during the
first six Schwarz iterations in this experiment, where the magnitude of corrections is also
expected to be larger than later on.

Around July 2, the model atmosphere appears to be in a state where slight changes in
interface conditions yield a different boundary layer type in the decision tree described
by Fitch ( 2022 ). The discrete change of turbulence parameterization can then result in the
significant differences in atmospheric heat fluxes, temperature, and moisture seen in the
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Figure 5.3.: Boundary layer types as determined by OpenIFS over time. Panel (a) shows
the boundary layer type at each time step depending on the coupling scheme.
Panel (b) shows the number of total boundary layer type changes when using
SWR. Whenever the type changes from one iteration to the next, we increment
the counter.

same time span.
However, this does not explain why all three non-iterative coupling schemes deviate

from the converged SWR solution at the end of the simulation: Here, the radiation scheme,
as well as the boundary layer type are insensitive to the coupling algorithm (Figure  5.1b 

and Figure  5.3 ). Nevertheless, T , q, Js, and Jq give different results.
We get additional insight by looking at the vertical profile of atmospheric temperature

in the boundary layer, given in Figure  5.4 . Therein, we show the temperature on the last
15 model levels (46-60): This corresponds to a height of around 2.3 km in the control ex-
periment at a constant pressure level of 763 hPa. The interval fully contains the boundary
layer, which does not exceed a height of 850 m.

We show the temperature profile only at specific points in time during the simulation.
At 12:00 on July 2, panel a), the atmosphere-first and ocean-first profile are already visibly
different from the SWR result, whereas the parallel algorithm’s solution closely follows the
converged profile. At this time, the former two have the cumulus-topped boundary layer
type whereas the latter are classified as dry convective, cf. Figure  5.3 .

Panel b) shows the profile 12 hours later. The two sequential methods have developed a
vertical stratification which does not change significantly until the end of the simulation,
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Figure 5.4.: Snapshot of the vertical air temperature profile at four different times during
the control experiment. We show the last ten model levels which contain the
boundary layer.

see panels c) and d). The solution with the parallel coupling scheme seems to depart from
the SWR solution near the surface, while still following the shape of the curve further
upwards. Another 12 hours later, at 12:00 on July 3, the surface temperatures are very
close to each other, corresponding to the lower difference we also see in the other plots in
this chapter. However, we see that the three non-iterative solutions start to group around
930 hPa, a process that is complete by the end of the simulation. In panel d), five hours
before the final model time step, the new profiles are fully developed. We see here that
the already significant difference in surface temperatures is linked to a large temperature
difference of 4.5 °C at 930 hPa.

Overall, Figure  5.4 shows that the small changes in interface conditions due to the
coupling method lead to a significant change in vertical stratification of the atmospheric
boundary layer in the control experiment. One reason for this appears to be that OpenIFS
distinguishes boundary layer types in each time step, which are sensitive to the surface
temperature and can yield strong deviations in the structure of the planetary boundary
layer. The surface variables capture a part of this signal. Nevertheless, it is necessary to
study the whole boundary layer in order to discuss the potential physical implications of
changing the coupling scheme and, therefore, the interface conditions seen by the model.

The OpenIFS configuration settings contain a toggle for the convective mass flux scheme 

3
 

which is part of the EDMF framework, cf. Equation ( 3.9 ). In Figure  5.5 , we show the air
temperature profile for the control experiment if the mass flux term is turned off. Here,
only the ocean-first coupling scheme visibly deviates from the converged SWR solution.

3LECUMF in the NAEPHY namelist
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Figure 5.5.: Same as Figure  5.4 but we turn off the convective mass flux scheme during the
experiment.

However, the differences are never large enough to trigger a different vertical structure
of the boundary layer. This further indicates that the parameterization for vertical turbu-
lence, specifically the sensitivity of the mass flux scheme to small SST changes can cause
large differences between the non-iterative and SWR algorithms, even on time scales of a
few days.

5.1.3. Comparison of Convergence Criteria

For the previous visualizations, we used the 20th Schwarz iteration as the reference so-
lution. We have verified that at this iteration, the AOSCM output has converged up to
floating-point precision. We use the control experiment to study the convergence criteria
we introduced in Section  4.3 . The aim here is to find out whether runtime estimates of the
convergence error are close to those taking into account the reference solution. We also
compare the two different convergence thresholds, one depending on the amplitude of a
coupling variable over a full simulation, the other depending on its value at the current
time step tn. Note that for this assessment, we do not use the model output but instead the
debug files written out by OASIS (which use double instead of single precision).

In the example simulation, all four convergence criteria–Equations ( 4.3 ) to ( 4.6 )–give the
same result: They are fulfilled for all variables starting from the eleventh iteration. We
have selected two coupling variables to visualize the convergence behavior in Figure  5.6 :
the SST, which is sent from NEMO to OpenIFS, and the non-solar heat flux Qns, which is
sent from OpenIFS to NEMO. Dots denote the two different ways of estimating the error
in iteration k while lines represent the convergence thresholds.

How the error is estimated corresponds to the left hand side of the convergence criteria.
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Figure 5.6.: Convergence behavior of Schwarz iterations for two coupling variables in the
control experiment.

The circular dots show the maximum absolute difference of each Schwarz iteration k with
respect to the reference solution of iteration 20. This corresponds to the computation used
in Equation ( 4.5 ) and Equation ( 4.6 ). It assumes that the reference value c20 is already
available and known to be converged, which is why these two criteria can not be evaluated
at runtime. The Y-shaped data points correspond to the maximum value (across all time
steps tn) of the difference between two subsequent iterations k and k+1. This is the largest
value of the left hand side in Equation ( 4.3 ) and Equation ( 4.4 ). Since no reference solution
is required, this error estimate can be computed at runtime.

Both estimates show results of similar magnitude and behavior for each coupling vari-
able. From the data in Figure  5.6 , we see that the convergence error declines stepwise, stay-
ing at the same magnitude for two consecutive iterations before dropping noticeably. Note
also that the location of the downward step is shifted by one in the SST results compared
toQns. The strongest difference between the two error estimates arises when ‖ck+1−c20‖∞
and ‖ck − c20‖∞ have a similar magnitude. This is the case in, e.g., iterations k = 6, 8 for
SST or k = 5, 7, 9 for Qns. At such a point, the runtime criterion could be met for a cou-
pling variable while the comparison with the reference solution would yield a significantly
higher error. However, since there is a phase shift between the error estimates depending
on the coupling variable, this will not be a problem if all convergence thresholds are of
suitable magnitude. After all, an iteration is only marked as converged if Equation ( 4.3 )
and Equation ( 4.4 ) are fulfilled for all coupling variables.

Figure  5.6 also shows the convergence thresholds for the different criteria. The black
dashed line represents TOL · A(c), i.e., the amplitude convergence threshold. This thresh-
old is used in Equation ( 4.5 ) and Equation ( 4.3 ). In the plots we have only included the
amplitude of iteration 20 for legibility and since the amplitude over the full 4-day simula-
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tion is not significantly affected by the coupling scheme (this is also indicated for the SST
and solar heat flux in Figure  5.1b ). The green shaded area represents the range of TOL · |c|,
which we again only display for c20 in all four cases. As can be seen in Figure  5.6 , and as
was already mentioned in Section  4.3 , the two thresholds can give quite different results
depending on the variable.

It is not clear a priori that small absolute values of a coupling variable coincide with a
small difference between iterations. This could lead to very rapid or very slow conver-
gence of the ”local” convergence criteria (Equations  4.4 and  4.6 ). In our experiments, all
convergence criteria behaved similarly and we did not see any indication for such an issue.

We can conclude that the two runtime criteria (Equations  4.3 and  4.4 ) give similar re-
sults as the ones using a reference solution for comparison. The weaknesses of both cri-
teria are counteracted by the fact that we take all coupling variables into account. In the
forthcoming analysis, we only accept a solution as converged if both Equation ( 4.3 ) and
Equation (  4.4 ) are met. Especially for implementations where a global amplitude of c is
not available, paying more attention to the individual thresholds will be necessary. For
future experiments, using a lower value of TOL for SST (or °C instead of Kelvin) would
make sense. Since we rely on two criteria and check them for all coupling variables, hav-
ing one relatively loose threshold is not a big problem as long as the threshold for other
variables is sufficiently strict.

5.2. Case Study: Numerical Weather Prediction Setup

Up to now, we have only looked at a single, four-day simulation with the EC-Earth AOSCM.
While the coupling algorithms did have a visible impact on the model results for the con-
trol experiment, it is not clear whether this is representative in general. To this end, we
want to study the effect of Schwarz waveform relaxation on a typical application of cou-
pled atmosphere-ocean models more robustly. These are, in general, numerical weather
prediction (NWP) and climate simulations. In this thesis, we restrict ourselves to numeri-
cal weather prediction, for a variety of reasons.

First of all, our implementation of SWR uses a Schwarz window equal to the total sim-
ulation time (see Chapter  4 ). Thus, the amount of iterations necessary for convergence
scales with the length of the simulation. This makes Schwarz iterations on longer time
scales infeasible for now. Potential solution strategies are discussed in Chapter  6 .

Secondly, model drift plays a bigger role for time scales longer than a couple of days. We
would have to include nudging above the boundary layer, as previously done by Deppen-
meier et al. ( 2020 ) and Hartung et al. ( 2018 ). However, atmospheric nudging “interferes
with the performance” of the boundary layer parameterization (Hartung et al.,  2018 , p.
4130). Since we are precisely interested in the behavior of the boundary layer, we want to
avoid using the relaxation terms in the single column model.

Finally, at the stage of writing this thesis, we only have atmospheric initial conditions
and forcing data available for the month of July, 2014. For climate applications, we would
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Variable name Symbol Value

Simulation time T 48h
Coupling time step ∆tcpl 1h
Ocean time step ∆toce 30min
Atmosphere time step (dynamics, physics without radiation) ∆tatm 12min
Radiation time step ∆trad 1h

Table 5.1.: Time stepping setup for the NWP case study.

need forcing data for longer time spans to compare at least monthly or seasonal means
produced by the model.

5.2.1. Model Setup and Initial Conditions

Representative for a typical weather forecast, we decide to do two-day simulations. Two
days are still well within the atmospheric predictability limit but we expect differences due
to the diurnal cycle and interplay of different parameterizations. Since NEMO is mainly
forced by the atmosphere, two days of simulation also give the ocean some spin-up time
to develop a diurnal SST cycle, cf. Figure  5.1a .

For the experiments in this section, we use the same time step sizes as used for the
operational ensemble forecasts by the ECMWF. Of course, the ECMWF’s NWP model dif-
fers from the AOSCM significantly: for instance, it is a global, three-dimensional model
with a higher vertical resolution which includes an additional wave model. However,
the OpenIFS-SCM is based on their atmospheric model, while the ocean model used in
ECMWF predictions is a version of NEMO. Suitable time step sizes vary for each atmo-
sphere and ocean model due to the implemented numerical methods; (Open)IFS time step
sizes are comparatively large, which is why it makes sense to take the host model as a
reference instead of, e.g., the significantly smaller time step sizes chosen by Marti et al.
( 2021 ). An overview of the time step sizes for this case study is given in Table  5.1 . 

4
 

The limiting factor for the amount of forecasts is the available input data for the atmo-
spheric component, which ranges from July 1, 00:00 until including July 30, 18:00, in six-
hourly intervals. To do two-day forecasts, the last possible initial condition is on July 28,
18:00. This leaves 112 available initial conditions to compare the four coupling schemes.

However, the atmosphere is a chaotic system, which is why NWP is commonly done
with ensemble forecasts: The same simulation is repeated with small perturbations in the
initial conditions, to allow for a statistical analysis of the resulting state of the atmosphere.
How to perturb initial conditions in a physically and statistically motivated sense is not
a trivial task. For our case study, we have decided on the following method: We use
the initial data from the ERA input to run a first set of two-day simulations. There, we

4In operational forecasts, the time step of ice model is ∆tice = 1h, but we consider an ice-free case here.
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Time

Figure 5.7.: Schema of how we create initial data for ensemble forecasts.

use the three non-iterative coupling schemes to produce three different final states of the
atmosphere. These are the new initial conditions we use to initiate the ensemble forecast.

The first set of initial conditions can be generated using a simulation from July 1 to July 3,
00:00 (UTC). Thus, the final set of initial conditions consists of six-hourly initial conditions
from July 3, 00:00 to July 28, 18:00. We therefore have 4 · 26 = 104 initial dates with three
initial conditions per date. We do not use the original input data as initial conditions: The
two day simulations from the AOSCM give very different results from the original ERA
data, which would prevent any meaningful statistical analysis. This is unsurprising as
the ERA data was created with a different atmospheric model and because we force the
AOSCM only every 6h, using linear interpolation between the forcing time steps.

A schematic of this approach is given in Figure  5.7 . Black dots represent an initial con-
dition from reanalysis data, available at every forcing time step (gray vertical lines). Using
the parallel, atmosphere-first, and ocean-first algorithms, we produce three new initial
conditions 48h later (colorful lines and dots). In general, these result in a very different
model state than the reanalysis data.

For each of the 3 · 104 = 312 initial conditions, we run two day-forecasts all four im-
plemented coupling schemes: the three non-iterative coupling algorithms and Schwarz
waveform relaxation. This gives 4 · 312 = 1, 248 two-day simulations.

To determine whether the Schwarz iterations have converged, we use both runtime cri-
teria, Equation ( 4.3 ) and Equation ( 4.4 ). An iteration is defined to have converged only
if both criteria are met for all coupling fields. For each initial condition, we consider the
converged SWR solution to be the ”most correct” one. This does not mean that it is the
closest to observations. But it is the one closest to the solution of the discretized coupling
problem (which would be attained by exchanging a higher order interpolant and not just
an average of the coupling fields).

5.2.2. Results with the NWP Setup

Convergence of Schwarz Iterations

Out of 312 two-day forecasts with SWR as a coupling scheme, 295 converged according to
both runtime convergence criteria introduced in Section  4.3 (94.6%). Figure  5.8 shows the
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Figure 5.8.: Number of Schwarz iterations necessary to reach convergence in the NWP case
study. The 17 non-converged simulations are not included.

distribution of necessary iterations to convergence for these 295 simulations. In all cases,
less than 20 iterations were necessary for convergence despite the large Schwarz window
size of 48h. 

5
 In 171 forecasts, approximately 55% of cases, less than ten iterations were suf-

ficient. This confirms the benefits of using a runtime criterion to determine convergence,
instead of enforcing a constant number of Schwarz iterations.

In the 17 cases where the SCM did not converge, small oscillations formed after at most
20 Schwarz iterations. OpenIFS and NEMO alternated between two model states which
are physically close together (e.g., with less than 0.01°C difference in sea surface temper-
ature). We observed oscillations with a period of four iterations and, in one case, oscil-
lations with a period of two iterations. We return to this topic in Section  6.1 but do not
investigate it further here. In the following plots, we have not excluded the cases with
oscillations, since the differences between the two model states are always relatively small
from a physical point of view. We have always used iteration 39 in these cases.

Ensemble Spread

Past studies have implied that Schwarz waveform relaxation reduces the ensemble spread
in atmosphere-ocean coupling (Connors & Ganis,  2011 ; Lemarié et al.,  2014 ). To find out if
this is the same in the AOSCM, we compare the initial and final spread of the atmospheric
state. 

6
 To quantify model spread, we use atmospheric temperature T as a prognostic vari-

able representing the current model state. 

7
 We define the spread as the vertical sum of the

standard deviation σ(T ) across the three available initial conditions:

5By contrast, Marti et al. ( 2021 ) used 50 iterations in each coupling period, yielding significantly larger com-
putational cost.

6Ocean quantities cannot be taken into account because we did not perturb the ocean initial condition.
7As T is given in Kelvin, this means we will not run into sign changes or values close to 0.
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5.2. Case Study: Numerical Weather Prediction Setup

Coupling Scheme Smallest Spread Ratio Count

Atmosphere-first 23/104 (22%)
Ocean-first 29/104 (28%)
Parallel 26/104 (25%)
Schwarz Waveform Relaxation 26/104 (25%)

Table 5.2.: Fraction of forecasts where a given coupling scheme has a lower rspread than the
other three coupling schemes.

spread(t) =

60∑
i=1

σ (Ti(t)) (5.1)

The initial spread ranges from 4 · 10−2°C to 10°C, which might indicate that our method
of creating perturbed initial data produces rather inconsistent results. For each start date
and coupling scheme, we can also compute the final spread, spread(tend). Combining the
two, we define the spread ratio

rspread =
spread(tend)

spread(tstart)
. (5.2)

Overall, the AOSCM model spread increases over the course of the two day forecast, with
a median spread ratio between 1.9 and 2.3 per coupling scheme. However, sometimes
the model spread decreases over the course of the simulation, i.e., rspread < 1. Such a
behavior would be a rare exception for a 3D general circulation model. In our case study,
this happens in 57 out of 416 cases (13.7%). A potential reason for this is that the externally
prescribed dynamics constrain the AOSCM and prevent free model drift. Other times,
rspread � 1, with maximum values between 29 and 43 attained on July 12.

We want to see whether Schwarz waveform relaxation leads to a significantly smaller
model spread compared to the non-iterative coupling algorithms. To this end, we check
for each forecast date which coupling algorithm leads to the smallest spread ratio. The
results are given in Table  5.2 . What stands out is that they are almost uniformly distributed,
with every coupling scheme performing ”best” in about 25% of cases. This suggests that
the coupling scheme does not have a strong influence on model spread in the EC-Earth
AOSCM, as opposed to previous studies done by Connors and Ganis ( 2011 ) and Lemarié
et al. ( 2014 ). More analysis of the data strengthens this hypothesis: By all measures we
considered, the model spread seems to be mostly influenced by the initial and forcing data,
while the coupling algorithm plays a minor role. Schwarz waveform relaxation does not
perform significantly better than the non-iterative coupling algorithms–but neither does
any other algorithm.
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5. Numerical Experiments

Which Non-Iterative Coupling Method is the Best?

Finally, we want to use the experiment results to determine which non-iterative coupling
algorithm performs the best for the 312 initial conditions we produced as described in Sec-
tion  5.2.1 . We consider a coupling algorithm to give ”the best” result if its 48h forecast is
closer to the converged SWR solution than the other two coupling methods. The previ-
ous study by Marti et al. ( 2021 ) claims that the sequential atmosphere-first algorithm will
give significantly better results than the ocean-first algorithm, with the parallel scheme
performing the worst. The results of the control experiment in Section  5.1 suggest that
we will reach a similar conclusion when looking at sea surface temperature, while a more
nuanced result could be obtained for the atmospheric quantities. Recall that in the control
experiment, the parallel algorithm outperformed the two sequential coupling algorithms
for the first three days of the simulation when looking at atmospheric temperature and
moisture.

We select three variables to measure the difference between forecasts: sea surface tem-
perature (SST) as a representative quantity for the ocean, and atmospheric temperature T
and moisture q in the boundary layer. To simplify the analysis, we do not recompute the
size of the boundary layer for each experiment but instead select the lowest ten model lev-
els of OpenIFS, which span from surface pressure down to p = 913±5 hPa (z ≈ 900m). For
all three variables, we compute the ‖.‖2-norm of the difference between the result obtained
with the non-iterative coupling algorithm and converged SWR:

ei(SST ) = ‖SSTi − SSTSWR‖2 = |SSTi − SSTSWR| (5.3)
ei(T ) = ‖Ti − TSWR‖2 (5.4)
ei(q) = ‖qi − qSWR‖2, (5.5)

where i ∈ {atm, oce, par} denotes the coupling scheme.
As for the ensemble spread, we can count how often a coupling scheme has the lowest

error for each variable, i.e., i ≡ arg mini ei. This gives a ranking of non-iterative cou-
pling schemes, which we summarize in Table  5.3 . If the coupling algorithm does not have
a strong influence on the performance, we would expect an even distribution of about
104/312 ”wins” per coupling algorithm. The ranking in the table confirms the results of
Marti et al. ( 2021 ), particularly when looking at SST: The atmosphere-first algorithm out-
performs the other two coupling algorithms in more than 2/3 of the cases. The parallel
coupling scheme has the worst score but is not far behind the ocean-first coupling algo-
rithm. This falls in line with the hypothesis that the phase error present in these two
methods is responsible for most of the error in the sea surface temperature.

For atmospheric T and q we see identical results. Here, we obtain the same ranking as
for the ocean, but the distribution is less skewed: The sequential atmosphere-first method
produces the closest results to Schwarz waveform relaxation in 42% of cases, while the
parallel algorithm ”wins” in 24% of cases (almost twice as often as for the sea surface
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5.2. Case Study: Numerical Weather Prediction Setup

Sea Surface Temperature Atmospheric T , q in Boundary Layer

1. Atmosphere-first (212/312, 68%) 1. Atmosphere-first (132/312, 42%)
2. Ocean-first (57/312, 18%) 2. Ocean-first (106/312, 34%)
3. Parallel (43/312, 14%) 3. Parallel (74/312, 24%)

Table 5.3.: Ranking of non-iterative coupling schemes in terms of how often they produce
the two-day forecast closest to the converged SWR result.

temperature). This suggests that the control experiment was an outlier simulation in terms
of coupling algorithm performance–but not as rare as one would expect from the results
previously found by Marti et al. ( 2021 ).

The ranking in Table  5.3 does not give any information on the size of ei. The maximum
errors across all 3 · 312 = 936 non-iterative experiments are significant considering the
short duration of the simulation:

emax(SST ) = 0.27°C
emax(T ) = 5.19°C

emax(q) = 3.25 g kg−1

However, such large errors come up rarely while the vast majority of experiments is con-
siderably closer to the converged SWR result. To illustrate this, we compute a weighted
error e/emax, group the result into bins, and count how often a coupling scheme appears in
each error range. The results are given in Figure  5.9 , which is by design similar to Figure
5 of Marti et al. (  2021 ). In that paper, they used the maximum difference in SST between
two subsequent coupling windows, but this value is less easy to obtain in our experiment.
Figure  5.9 confirms the ranking in Table  5.3 . We see that the sequential atmosphere-first
algorithm strongly outperforms the other two coupling schemes for sea surface temper-
ature, whereas the difference is less clear for atmospheric quantities. What stands out in
Figure  5.9 is that in most experiments, the error stays below 10% of the respective emax.
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Figure 5.9.: Weighted error e/emax for the three observed quantities, grouped by coupling
scheme.
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6. Discussion

In the last chapter, we have seen various effects of switching the coupling scheme in the
EC-Earth AOSCM. We will now go on to discuss the implications of the numerical re-
sults in Section  6.1 . Section  6.2 reviews the benefits and limitations of the implementation
choices we made in order to support SWR in the single column model.

6.1. Discussion of Numerical Results

6.1.1. Impact of Coupling Schemes on Numerical Results

We carried out two separate numerical experiments with the EC-Earth AOSCM, a sin-
gle four-day control experiment, as well as a collection of 1,248 two-day forecasts. We
placed the AOSCM at the PAPA station, an ice-free location in the Pacific which has been
thoroughly studied in the context of Earth system model development (Hartung et al.,

 2018 ). For both experiments, we used realistic time step sizes and restricted the simulation
lengths to prevent model drift. We saw in the control experiment and the NWP case study
that the coupling method can lead to significant differences in the numerical solution.

The ocean results are in line with previous research by Marti et al. ( 2021 ), Valcke ( 2021 ),
and Voldoire et al. ( 2022 ). Differences in ocean output are most visible in sea surface tem-
perature, where we see a phase shift depending on the coupling algorithm (Figure  5.1a ).
This phase shift can be explained from the difference in coupling lag, as described in Sec-
tion  2.2 : In the parallel and ocean-first algorithms, NEMO sees atmospheric fluxes from
the coupling window [tn−1, tn] during the integration from tn to tn+1. This means that the
ocean sees a shifted diurnal cycle depending on the coupling scheme, causing a numerical
error. When using the sequential atmosphere-first algorithm or SWR, the lag is eliminated.
This result carries over to the NWP case study, where we clearly see that the sequential
atmosphere-first algorithm outperforms the other two non-iterative coupling schemes in
Figure  5.8 and Table  5.3 . The atmosphere-first algorithm gives the best result in more than
two thirds of cases and the error magnitude with respect to SWR is significantly lower
than what is observed with the parallel and ocean-first algorithms. The differences in
ocean salinity and ocean currents are smaller but they show a similar pattern as sea sur-
face temperature: the ocean-first and parallel algorithm deviate the most, indicating that
the coupling lag is responsible for most of the behavior. Since the sea surface temper-
ature shows the clearest signal and is the only ocean variable which directly affects the
atmosphere, it appears to be a good measure for NEMO’s response to changes in interface
conditions.
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In contrast to Marti et al. ( 2021 ), we studied atmospheric variables in more detail: In
general, numerical differences are larger in the atmospheric output, which is unsurprising
seeing as the ocean is a significantly slower physical system. We saw that wind speeds re-
act very little relative to their strength and seem to be mostly driven by the externally pro-
vided atmospheric dynamics (horizontal advection, vertical advection, and geostrophic
wind), cf. Figure  5.1b . In the control experiment, atmospheric temperature and moisture
reacted very sensitively to changes in the coupling scheme. As opposed to Marti et al.
( 2021 ), we cannot conclude that atmosphere-first outperforms the other two non-iterative
coupling algorithms in the control experiment. While the overall ranking of non-iterative
coupling schemes in the NWP case study agrees with previous findings, the atmosphere-
first algorithm does not outperform the parallel and ocean-first algorithms as clearly as for
NEMO output. While sea surface temperature might be a sufficient measure to determine
SWR convergence in models like the AOSCM and IPSL-CM6 

1
 , it is not sufficient to draw

general conclusions about the performance of a coupling scheme for the atmosphere-ocean
problem.

The large differences in atmospheric temperature and moisture in the control experi-
ment are not directly explainable by the comparatively small changes in sea surface tem-
perature. Instead, physical parameterizations need to be taken into account for studying
the atmosphere-ocean coupling problem properly. In our case, we offer a mechanistic ex-
planation for the feedback at play in the OpenIFS-SCM: Small SST changes, depending
on the coupling algorithm, can trigger different boundary layer parameterizations in the
atmosphere. These are directly linked to the convective mass flux term used by the EDMF
scheme for vertical turbulence parameterization. The convective term influences the ver-
tical stratification of the atmosphere (Figure  5.4 vs. Figure  5.5 ) and can affect the radiation
scheme inside OpenIFS (Figure  5.2 ). The boundary layer types in OpenIFS are determined
using sharp thresholds and purely based on the instantaneous values of atmospheric quan-
tities. Figure  5.3 shows how sensitively the parameterization can react to changes in the
coupling algorithm and across Schwarz iterations. This, and the large changes in tem-
perature and moisture it leads to, indicates potential for future work to reduce unstable
and perhaps unrealistic model behavior in certain situations. In previous analytical work
studying the convergence of SWR in atmosphere-ocean coupling, vertical turbulence was
only approximated with a diffusive term (e.g., Clement et al.,  2020 ; Connors & Ganis,  2011 ;
Lemarié et al.,  2013a ,  2013b ). The experiments in this thesis indicate that the mass flux term
can have significant impact on the behavior of the model.

6.1.2. Schwarz Waveform Relaxation Convergence

The NWP case study and the control experiment showed that Schwarz waveform relax-
ation can converge with a relatively low number of iterations for multi-day simulations
in the AOSCM. In all simulations where SWR converged, less than 20 iterations were suf-

1see the discussion in Section  4.3 
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ficient, and a majority of the experiments converged in less than ten iterations. This is a
notable result, considering the fact that we did not use any acceleration methods: Marti
et al. ( 2021 ) used 50 iterations per Schwarz window, while the Schwarz window size was
equal to the coupling period in their case.

However, there are physical situations where SWR does not converge. Instead, oscilla-
tions with a period of four or two iterations developed, with a comparatively small ampli-
tude. This happened in 17 out of the 312 two-day forecasts presented in Section  5.2 . Such
a model behavior was previously observed, though never fully explained, in the results of
Marti et al. ( 2021 ) and Valcke ( 2021 ). It is unclear whether the two states are two possible
solutions to the discrete coupling problem, or if the SWR method fails to converge to a sta-
ble solution in between the states. Investigating these cases further could reveal whether
specific physical conditions or parameterizations are responsible for such oscillations. It
remains an open question whether series acceleration methods (e.g., Gatzhammer,  2014 )
or adjustments to the coupling conditions (as suggested in Gross et al.,  2018 ) are a better
path to address this issue.

As seen in Figure  5.6 and Figure  5.8 , the runtime convergence criteria we introduced
in Section  4.3 are a valuable addition to the Schwarz algorithm in atmosphere-ocean cou-
pling. Our approach of looking at multiple, already exposed, coupling variables seems to
be robust and applicable to different models and implementations. For future experiments,
a stricter SST threshold would be adequate when using the criterion in Equation ( 4.4 ),
which is most comparable to convergence criteria used by other SWR implementations
such as the one by Rüth et al. ( 2021 ).

6.1.3. Limitations of the Numerical Experiments

The conclusions we can draw from the numerical experiments in Chapter  5 are limited by
the available input files. Particularly, for technical reasons, we only had atmospheric initial
and forcing data available for a single month at the PAPA station. This input file contains
six-hourly data, which OpenIFS interpolates linearly in every model time step, which is
“likely not a good assumption for the temporal evolution of the forcing fields” (Hartung
et al.,  2018 , p. 4133). Repeating similar experiments with atmospheric data of higher
frequency, at different (ice-free) locations, and during more than one season, is advisable
to strengthen the robustness of our claims.

Using the GLORYS12V1 reanalysis product allowed us to easily obtain input data for
NEMO which is globally available, time-continuous, and requires little preprocessing.
However, we note that this data set only contains daily averages, which might impair
the quality of the results.

We have not compared any of our results to observation data. In a first step, this is also
not necessary: The primary questions of interest were how far standard coupling algo-
rithms deviate from the converged SWR solution. To answer this, no observations have to
be taken into account. For future model development however, comparison with obser-
vation data is important: Weather and climate models are used for real-world predictions
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and cannot be considered in isolation from measurements. As noted by Gross et al. ( 2018 ,
p. 3515), ”when a novel coupling scheme is implemented in a tuned model, the solution
is likely to be worse for the new coupling method if the model is then not retuned, even
if the new coupling scheme would lead to a superior solution in the absence of tuning.”
This should be taken into account if one combines coupling algorithm comparisons with
parameter-tuning studies like the one by Deppenmeier et al. ( 2020 ).

The EC-Earth AOSCM uses realistic physical parameterization and is, in many ways,
closer to a 3D general circulation model than simplified models such as the ones studied
by, e.g., Clement et al. ( 2020 ), Connors and Doland ( 2019 ), and Thery et al. ( 2022 ). How-
ever, we stress that results from a single column model cannot be directly compared with
comprehensive general circulation models. One example where this was very prominent
in our experiments was the topic of ensemble spread (cf. Section  5.2 ): Since the atmosphere
in the AOSCM is forced in every model state by the (linearly interpolated) large-scale dy-
namical forcing, it does not evolve as freely as typical NWP models. For this reason, we
have to conclude that it is not a suitable tool to study the impact of coupling schemes on
ensemble spread.

6.2. Discussion of the Implementation

As part of this thesis, the EC-Earth AOSCM was extended to allow users to switch between
the parallel, sequential atmosphere-first and sequential ocean-first coupling schemes. To
support this feature in a coupled model using OASIS3-MCT is straightforward and we
have provided the technical details in Appendix  A.4 . Furthermore, it is now possible to
do additive Schwarz waveform relaxation with the AOSCM, using a similar approach as
developed by Valcke ( 2021 ) as part of the COCOA project. 

2
 The implementation is based

on a Python wrapper which replaces the standard way of running the AOSCM (adapting
an XML file and manually running a shell script). To enable future research with different
coupling configurations, both within and outside of the EC-Earth AOSCM, the implemen-
tation follows good practice to be maintainable: It is thoroughly documented and tutorials
for EC-Earth users are available. The code makes use of modern Python features, well-
tested open-source libraries, and is written in a modular way.

Overall, our implementation treats OpenIFS and NEMO as black boxes. It is based on
fundamental concepts of the OASIS coupling software, which is used in various climate
models (Valcke,  2013 ). The outer Python layer separates the Schwarz algorithm from the
rest of the model, as opposed to the SWR implementation by Marti et al. ( 2021 ). This
separation of responsibilities made a working prototype of SWR for the AOSCM realizable
in a matter of weeks. Switching the underlying version of OpenIFS or placing the column
at a location with sea ice does not require any changes in the Python wrapper. As soon

2Additionally, a multiplicative Schwarz method can be replicated with this algorithm, as described in Ap-
pendix  A.6 , but it introduces a lot of duplicate computation. This is acceptable in the case of the AOSCM,
which has a low computational cost, but not feasible for 3D coupled general circulation models.

54



6.2. Discussion of the Implementation

as coupling variables are modified or the horizontal model grids are adapted, adjustments
will be necessary. However, such changes will in general affect the coupling setup, i.e.,
OASIS configuration settings. Thus we conclude that our SWR implementation does not
significantly decrease the maintainability and extensibility of the AOSCM. Since we only
introduce an outer layer, the model is still usable in the same manner as before: No existing
user is required to modify their setup to use the default coupling configuration. Because
of these benefits, we propose that SWR logic should generally be implemented separate
from the model components; either directly inside the coupling software, as done by Rüth
et al. ( 2021 ), or in a separate component such as the Python wrapper we use.

Conceptually, each Schwarz iteration is a full AOSCM run in our implementation. This
creates an overhead of setting up the model structure before every iteration and renaming
the output directory afterwards. OASIS itself neither has the control, nor the capability, to
have a model component repeat a coupling period. However, this functionality is a crucial
part of Schwarz waveform relaxation (cf. Figure  2.5 ). The only way to support it without
heavily modifying the model components and OASIS was to move this step beyond a
single AOSCM run.

As a consequence of the previous choice, we so far only support a Schwarz window size
equal to the full simulation length of the AOSCM. Larger Schwarz window sizes generally
increase the number of iterations for SWR to converge (Gander & Halpern,  2007 ). This
limits the feasible simulation length, as multi-week simulations can easily require upwards
of a hundred iterations. A first step to improve this would be to split up a simulation
into multiple sub-intervals (e.g., 24h). The output of the previous interval could be used
to restart the model. This solution has two issues: First of all, we once again introduce
an overhead of setting up the AOSCM for each Schwarz iteration and Schwarz window.
One could argue that this is somewhat counteracted by the fact that less iterations will be
necessary with shorter Schwarz windows, reducing the overall amount of computational
effort. The second issue is that the EC-Earth AOSCM, specifically the OpenIFS-SCM, is not
properly restartable: While a large amount of variables is saved after a model run, some
internal atmospheric variables are not available from model output. Therefore, in our
implementation, a simulation split up into multiple Schwarz windows is not guaranteed to
give the same results as one where the Schwarz window size is equal to the full simulation
time.

In the algorithm implemented as part of this thesis, the model components read in a
single value of each coupling variable, representing the average over the interval [tn, tn+1].
It would also be possible for each model to read in values more frequently, even in a mul-
tirate setting (where NEMO and OpenIFS use different time step sizes). For example, the
Python wrapper could interpolate the coupling variables during a coupling period to pro-
vide good approximations for the target component. However, this would not change the
fact that each model component considers the coupling variable to be constant during a
single time step. For true higher order waveform relaxation, the time integration method
inside OpenIFS/NEMO should have access to the interpolant, not a constant field (Rüth
et al.,  2021 ). In this sense, ”true” higher-order SWR is not achievable for the AOSCM
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without significant changes to the model code. A next step could nevertheless be to in-
vestigate which components would have to be adapted and how. Furthermore, it is an
open question whether an intermediate step towards higher order SWR, such as the one
illustrated above, already has measurable impacts on the numerical solution produced by
the Schwarz method.

As a final discussion point, we consider potential pitfalls when reusing our approach
for a 3D coupled general circulation model. It is a drawback of our implementation that
we manually remap the coupling variables between iterations. OASIS does not support
remapping fields if they are simply written out to or read in from a file. This is not a big
issue in the single column model, where the remapping operation consists of converting a
1 × 1 to a 3 × 3 array and vice versa. But for 3D models, this task is computationally and
mathematically involved. 

3
 To use our implementation for a 3D model, the Python wrap-

per should not be responsible for regridding the coupling fields. Instead, OASIS should
take care of this task. This could be achieved by extending the OASIS feature set (i.e., sup-
porting spatial operations for OASIS output and input fields). Such a solution would be
ideal from the perspective of our implementation, since it takes away responsibility from
the outer layer. Alternatively, it might be possible to call the remapping functionality out-
side of direct communication between models, which would introduce an additional step
in the outer layer. If this is the case, no development work inside OASIS3-MCT would be
necessary.

As indicated by the results of Marti et al. ( 2021 ), we expect a slower convergence speed of
Schwarz iterations for 3D simulations or when more than two model components are cou-
pled. This might raise the need for acceleration methods when using Schwarz waveform
relaxation. Options for this, according to existing literature, appear to be (Aitken) underre-
laxation or interface Quasi-Newton methods (Gatzhammer,  2014 ; Keyes et al.,  2013 ; Rüth
et al.,  2021 ). To our knowledge, these have thus far not been studied in the context of the
atmosphere-ocean coupling problem.

3In fact, ensuring that regridding is done accurately, reliably, and efficiently, is one of the reasons why cou-
pling software such as OASIS was developed in the first place (Valcke,  2013 , Section 2).
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This master’s thesis set out to investigate Schwarz waveform relaxation (SWR) in the EC-
Earth coupled atmosphere-ocean single column model (AOSCM). The goal was to make
the AOSCM a tool for comparing coupling algorithms and their impact on numerical so-
lutions of the atmosphere-ocean coupling problem. To this end, we added a simple way
for users to switch between three non-iterative coupling schemes: the parallel, sequen-
tial atmosphere-first, and sequential ocean-first algorithm. The first two are most com-
monly used in operational climate models. Furthermore, we created an outer layer for the
AOSCM to support Schwarz waveform relaxation with a Schwarz window size equal to
the simulation length. All of these are optional runtime features which do not affect the
default behavior of the AOSCM. The implementation treats the model components (the
1D versions of OpenIFS and NEMO) as black boxes and is therefore minimally invasive.

We have carried out two sets of numerical experiments with the AOSCM, both at the
PAPA station in the Northern Pacific Ocean during July 2014. We investigated the model
behavior for a single four-day simulation, studying various output variables for both the
atmosphere and the ocean. This is in contrast to previous numerical studies on atmosphere-
ocean coupling, where the focus was exclusively on the results seen in sea surface temper-
ature. We also compared 1,248 two-day simulations to obtain statistical insight into the
behavior of the AOSCM for time scales representative in numerical weather prediction.

Our experiments show that changing the coupling algorithm can have a significant im-
pact on the numerical solution, although the differences are small in the majority of simu-
lations at this location and time of year. We have identified the same phase shift in ocean
variables as previous research by Marti et al. ( 2021 ) and Voldoire et al. ( 2022 ). The con-
trol experiment revealed that the physical parameterizations in OpenIFS can react very
sensitively to small changes in interface boundary conditions. In this specific example,
the behavior seems to be related to the boundary layer type in OpenIFS, which is cho-
sen based on the instantaneous state of the atmosphere. Depending on the selected type,
different parameterizations for vertical turbulence are chosen for the boundary layer. Par-
ticularly, the convective mass flux term in the turbulence closure directly affects the atmo-
spheric stratification, which can cause large differences in temperature and moisture. Such
a decision-tree-based parameterization is difficult, if not impossible, to study theoretically.

We used the AOSCM to attempt a ranking of the non-iterative coupling algorithms in
terms of how close they are to the converged SWR result, similar to Marti et al. ( 2021 ): The
sequential atmosphere-first algorithm performs substantially better than the sequential
ocean-first algorithm, with the parallel coupling scheme coming in third place. This result
is in line with previous research, particularly when considering sea surface temperature.
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For atmospheric variables, the three algorithms lie considerably closer together and the
conclusions are less obvious.

As part of the implementation, we introduced runtime convergence criteria for Schwarz
iterations. These are model-agnostic and combine previous work on multiphysics cou-
pling in general and atmosphere-ocean coupling in particular. The numerical results in
Chapter  5 indicate that runtime convergence checks help reduce the computational effort
of Schwarz waveform relaxation in atmosphere-ocean coupling: The SWR algorithm con-
verged in at most 19 iterations in 95% of the experiments we conducted in this thesis,
while more than half of the experiments required less than ten iterations. In the remaining
simulations, the model developed small oscillations between two states.

An important part of this thesis was the consistent definition of the coupling problem
solved by the AOSCM in Chapter  3 . This merges previous theoretical work with the tech-
nical documentations of OpenIFS and NEMO. We explicitly include the physical parame-
terizations in the primitive equations, which makes the required interface boundary con-
ditions easily identifiable. Our overview can serve as a baseline to explain AOSCM behav-
ior, derive new idealized models, or compare the EC-Earth AOSCM with other coupled
atmosphere-ocean models.

As discussed in Chapter  6 we propose to confirm our numerical results with a larger
set of locations, time spans, and atmospheric forcing data of higher frequency. One could
also repeat the same simulations with another coupled SCM like CNRM-CM6-1D, where a
prototype for SWR experiments has been developed as part of the COCOA project (Valcke,
 2021 ; Voldoire et al.,  2022 ). Such a comparison can indicate whether our observations are
specific to the physical paramaterizations in the EC-Earth AOSCM. The coupling problem
formulation and the numerical experiments in this thesis are restricted to an ice-free sce-
nario, although NEMO contains a sea ice model. Including the sea ice-coupling conditions
would be an interesting next step, as the atmosphere-ocean-sea ice problem has so far only
been investigated with a simplified sea ice model (Lozano,  2022 ).

Furthermore, we suggest to investigate the cases where the SWR algorithm does not
converge. Research questions could be which physical situations cause this behavior and
whether series acceleration methods or adapted interface boundary conditions are a better
path to address this issue.

Finally, various directions exist to continue the work on algorithmic aspects of SWR
in atmosphere-ocean coupling. Obvious improvements to our implementation include
adding support for shorter Schwarz window sizes and using OASIS3-MCT instead of the
Python wrapper for regridding. Both steps are necessary in order to reuse our approach
for, e.g., full complexity models. An open research topic is the potential of higher-order
Schwarz waveform relaxation in the context of atmosphere-ocean coupling. The possible
benefits in terms of numerical results, but also the implementation challenges of properly
supporting it in Earth system models, have not been investigated as of now. The EC-Earth
AOSCM is a promising candidate to examine both aspects: It is based on the same code
as coupled general circulation models while the computational cost is low and issues with
non-matching grids are removed.
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A.1. Reynolds Averaging

The central lines of thought in this section are mainly taken from Vallis ( 2017 , Chapter 11),
Smits ( 2009 ), and Olbers et al. ( 2012 , Chapters 11, 12). The processes in the Earth system
fundamentally span ”the entire range of spatial and temporal scales” (Gross et al.,  2018 , p.
3506). In Earth system models, on the other hand, the primitive equations are discretized
in space and time, and not all scales are resolved in the discretization. A way to make this
apparent is Reynolds averaging, here studied generally for a conserved quantity φ. We
can view the discrete values of φ produced by the model as averages with respect to the
discretization, i.e., they represent a mean in space and time which we denote by φ and call
the Reynolds average of φ. The fluctuations of φ which are not resolved in the discretization
are referred to as φ′, leading to the Reynolds decomposition:

φ = φ+ φ′. (A.1)

Note that, in the rest of this thesis and in literature, we drop the overline of the conserved
quantity, i.e., φ = φ, thus pretending that this separation of resolved and unresolved scales
does not actually exist.

We assume that the following identities hold (for a discussion of these see, e.g., Olbers
et al. ( 2012 )):

φ = φ (A.2)

φ′ = 0 (A.3)

φψ = φψ (A.4)

φ+ ψ = φ+ ψ (A.5)

∂

∂γ
φ =

∂

∂γ
φ, (A.6)

with φ and ψ conserved quantities and γ an independent variable.

We will now consider the incompressible Navier-Stokes equations in Cartesian coordi-
nates and, particularly, the conservation of zonal momentum. By taking the Reynolds av-
erage of the momentum conservation equation and using the identities in Equations ( A.2 )
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to ( A.6 ), one obtains (cf. Vallis,  2017 ):

∂u

∂t
+ (u · ∇)u = −∂p

∂x
−∇ · u′u′. (A.7)

Recall that u = (u, v, w)T is the velocity vector and p denotes pressure. The final term is
referred to as the Reynolds stresses, which ”represent the effects of eddies on the mean
flow” (Vallis,  2017 , p. 414). Similar terms are encountered in the conservation equations
for temperature, salinity, and humidity, assuming again that the flow is incompressible.
The second order interaction of the eddy fluctuations u′u′, v′u′, w′u′ in the Reynolds stress
term in turn depend on third order eddy interactions u′u′u′, etc. Thus, as long as not
all temporal and spatial scales are resolved in the Navier-Stokes equations, there will be
more unknowns than equations, i.e., one encounters a closure problem related to turbulence:
Is there a way to represent the higher order fluctuations solely in terms of lower order
fluctuations? In particular, is it possible to represent the Reynolds stress terms using only
mean flow quantities? Assuming that this is possible is referred to as the turbulent closure
hypothesis and the resulting approximations are given in Section  3.1 .

”The effect of the small-scale turbulence in the stratified ocean and atmosphere, with
its small aspect ratio, is predominantly given by vertical processes.” (Olbers et al.,  2012 ,
p. 390) For this reason, only the Reynolds stresses interacting with the vertical velocity
fluctuations w′ is kept in the conservation equations, i.e., they reduce to:

∇ · u′φ′ = ∂

∂z
w′φ′. (A.8)

On a final note: In this derivation, we have always assumed incompressibility of the fluid
in the derivation of the Reynolds stress terms. While this is also the case in the primi-
tive equations for NEMO (cf. Section  3.2 ), the equations solved by OpenIFS are not using
this assumption. But with the hydrostatic approximation and when using pressure coor-
dinates, the continuity equation simplifies in a way that allows a reformulation similar to
Equation ( A.7 ) Vallis ( 2017 , p. 2.6.2), with the vertical velocity in pressure coordinates ω
instead of w.

A.2. Classification of AOSCM Interface Conditions

If one only considers the type of data which NEMO and OpenIFS exchange during cou-
pling (cf. Figure  3.1 ), one can conclude that NEMO sends the value of prognostic vari-
ables, whereas OpenIFS sends back tendencies, i.e., derivatives of prognostic variables.
This might suggest that ocean-atmosphere coupling is realized with a Dirichlet-Neumann
type coupling condition. However, this is not the case, as is apparent when looking at
the interface conditions in Equations ( 3.24 ) to (  3.29 ). As stated in Chapter  2 , the condition
enforced is a continuity of air-sea fluxes at the interface.

However, the interface operator C applied to a conserved variable φ is not the normal
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derivative ∂zφ but instead Kφ∂zφ. Since Kφ depends on φ, we cannot simply treat this as
a multiplication by a constant factor. The matter is further complicated by the fact that the
fluxes J are computed using nonlinear functions.

It is possible to express the interface conditions as a Robin-like condition in special cases
such as the sensible heat flux, using Equation ( 3.20 ):

Ka
T

∂T a

∂z

∣∣∣∣
z=0

= CH |U(z1)|(T a(z1)− T a|z=0), (A.9)

which we can reformulate as:(
CH |U(z1)|T a +Ka

T

∂T a

∂z

)∣∣∣∣
z=0

= CH |U(z1)|T a(z1). (A.10)

Note that this is not possible for, e.g., the horizontal velocities.
Because most of the interface condition treatment happens inside OpenIFS, this more

nuanced view is hidden when only considering the data sent between the models. For an
accurate numerical analysis of the coupling problem, it is however essential to consider
the full complexity. We point to past studies such as Clement et al. ( 2020 ), Connors and
Ganis ( 2011 ), and Thery et al. ( 2022 ) for examples in this regard.

A.3. Fundamentals of the OASIS Coupler

This section is mainly based on the OASIS3-MCT user guide (Valcke et al.,  2015 ). The nam-
couple is an input file read by OASIS and contains runtime information about the experi-
ment. Particularly, the second section provides information for all coupling and I/O fields
used during a simulation, e.g.: the coupling period (∆t in Section  2.2 ), the coupling field
type, the LAG parameter, as well as spatial and temporal transformations OASIS should
apply. Each of these fields has to be declared at compile time by model components, using
calls to OASIS library functions. However, not all coupling fields declared in the model
component have to be part of the namcouple.

As a temporal transformation, we always use AVERAGE, thus computing the mean of a
field over the coupling period. To map the horizontal grids onto each other, the MAPPING
transformation can be used.

A.3.1. Coupling Field Types in OASIS

There are four coupling field types important to understand the functionality of OASIS we
make use of in this work:

1. EXPORTED: This type of coupling field is sent from one component to another, with
potential spatial and temporal transformations applied by OASIS. In a normal cou-
pled simulation, this would be the default status for most fields.
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2. EXPOUT: A version of EXPORTED particularly suited for debugging cases. OASIS
sends the coupling field from the source to the target component and applies trans-
formations. Additionally, it writes out two debug files: One by the source compo-
nent, before sending the field, and one by the target component, after the data was
received and all transformations were applied.

3. OUTPUT: The field is not sent to the target grid but written out into a file. No spatial
transformations are possible when writing out the file.

4. INPUT: The field is not received from a source component but read from an input
file. No transformations (neither temporal or spatial) can be applied in this case and
the LAG parameter is not supported.

A.3.2. The LAG Parameter

A coupling field is sent from the source to the target component when the oasis_put()
and oasis_get() calls match, as determined by OASIS. In the default case, data would
be exchanged when the current time step of the source and target component is equal and
is an integer multiple of the coupling period, i.e.,

tsource = tn = ttarget. (A.11)

Recall that we defined tn as a coupling time step in Section  2.2 . The LAG parameter shifts
the oasis_put() calls in time relative to the oasis_get() calls:

tsource + LAG = tn = ttarget. (A.12)

If LAG = 0, we recover the default behavior.
In case LAG > 0, the target component receives the data from an earlier point in time,

tn−LAG. Assuming the two components take roughly the same amount of time to complete
a coupling window, this usually means that the call to oasis_put() already happened
when oasis_get() is called. This can prevent deadlocks and reduces waiting times,
along with a potential increase in inter-model parallelism. At the first coupling time step
t0, the source model has not produced any data that can be sent. In this case, the user has
to provide a so-called restart file, which gets read in and sent to the target model.

Choosing LAG < 0 has the effect that the target component receives data from a later
point in time as a boundary condition. This has drawbacks from a computational efficiency
point of view. However, it enables sequential coupling schemes which can yield more
accurate results (Marti et al.,  2021 ).

Modifying the LAG parameter thus fundamentally changes the coupling logic and gives
the user control over the question which boundary condition a model sees during a cou-
pling window.
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A.4. Sequential Coupling with OASIS

In the parallel coupling case, both OpenIFS and NEMO use their respective model time
step size as the LAG parameter. The component model that computes the coupling window
[tn, tn+1] first has to use its time step size minus the coupling period as a lag. The other
component, which uses the newer result in its computation of the same coupling window,
keeps its model time step size as the coupling lag.

We give an example of sequential atmosphere-first coupling, assuming the following
parameters: We choose a coupling period of ∆t = 3600s, an atmosphere time step size
∆tatm = 900s, and an ocean time step size of ∆toce = 1800s. As required, the coupling
period is an integer multiple of both model time step sizes.

Fields that are sent from OpenIFS to NEMO, e.g., the wind stresses, use LAG = ∆tatm −
∆t = −2700s. In general, the component model ”going first” has LAG ≤ 0. Fields sent
from NEMO to OpenIFS, in our case only the sea surface temperature, have LAG = ∆toce =
1800s.

Because the ocean-to-atmosphere fields have a positive LAG parameter, i.e., they are
read in from a restart file in the first coupling window. On the other hand, atmosphere-
to-ocean fields have a non-positive lag. Thus, they are only sent after computation by the
atmospheric model, in all coupling windows including the first one.

In sequential ocean-first coupling, using the same logic and example, one obtains 900s
as the lag for atmosphere-to-ocean fields and -1800s as the lag for ocean-to-atmosphere
fields.

A.5. OASIS Configuration Examples for SWR

We include two excerpts from the OASIS namcouple files used to configure the AOSCM in
a SWR simulation. We restrict ourselves to sea surface temperature, which NEMO sends
to OpenIFS. We assume the same simulation parameters as in Appendix  A.3.2 and that
the parallel algorithm is used in the first Schwarz iteration. The respective part of the
namcouple takes the following form:

1 O_SSTSST A_SST 1 3600 2 rstos.nc EXPOUT
2 3 3 1 1 OC1D ASCM LAG=1800
3 R 0 R 0
4 LOCTRANS MAPPING
5 AVERAGE
6 rmp_OC1D_to_ASCM.nc

For the specific syntax, we point to the OASIS3-MCT user guide (Valcke et al.,  2015 , Chap-
ter 3). These lines contain the following information:
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• the coupling field is called O SSTSST on the source component (NEMO) and A SST
on the target component (OpenIFS);

• the coupling period is ∆t = 3600s = 1h;

• the coupling lag is equal to ∆toce = 1800s;

• two transformations are applied by OASIS during communication: averaging over
the coupling period and remapping from the 3 × 3 OC1D grid to the 1 × 1 ASCM
grid, using the weights specified in rmp OC1D to ASCM.nc;

• the coupling fields should be sent and written out to debug files, as specified by
EXPOUT.

For a regular coupled run of the AOSCM, EXPORTED would also be a valid choice for the
coupling field type. However, our SWR implementation requires the OASIS output files
in order to reuse data from previous iterations, as explained in Section  4.2 .

For every Schwarz iteration after the initial guess, a different variant of the namcouple is
used:

1 # write out current iteration
2 O_SSTSST O_SSTSST 1 3600 1 rstos.nc OUTPUT
3 OC1D OC1D LAG=1800
4 LOCTRANS
5 AVERAGE
6 # read in from previous iteration
7 A_SST A_SST 1 3600 0 A_SST.nc INPUT

The treatment of the sea surface temperature is now split up into two different OASIS
tasks: saving the values of the current iteration to an output file and loading data from
the previous iteration. Note that here, neither regridding nor renaming coupling variables
is done by OASIS: OUTPUT and INPUT fields do not allow for the same transformations
as when data is communicated between two components. Instead, our Python wrapper
takes care of this task. Time-averaging is supported for OUTPUT fields, which is why we
can utilize it in our implementation.

A.6. Multiplicative SWR with the AOSCM

We want to show how our implementation reduces to a multiplicative SWR method when
one of the sequential coupling algorithms is used in the first Schwarz iteration. Recall
that the first Schwarz iteration corresponds to a regular coupled AOSCM run, whereas the
two models do not communicate directly in later iterations. As an example, we consider
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the case of the sequential atmosphere-first algorithm, depicted in Figure  2.4a . For now
we restrict ourselves to the case where the coupling window size is equal to the Schwarz
window size.

We now omit the details about which data is sent in the sequential atmosphere-first
algorithm and arrive at the following control flow: First, the atmosphere is evolved from
time step tn to tn+1. Then, it sends data to the ocean model, which uses this data in its
interface boundary conditions while integrating from tn to tn+1. This data dependency is
visualized in the leftmost part of Figure  A.1a .

After this initial iteration, the Python wrapper post-processes the OASIS output files and
they are used for the interface boundary conditions of the next iteration. As explained in
Section  4.2 , the communication now happens between, not during model runs. Figure  A.1a 

shows that the ocean model receives the same atmospheric data in both the first and the
second Schwarz iteration. The numerical solution of a model component only depends on
the values of the initial, boundary, and interface conditions. The only input data changing
for model components between two Schwarz iterations are the interface conditions, which
are provided by OASIS. In this example, NEMO receives the same interface data in the
first two iterations and will thus produce the same numerical solution. This in turn means
that NEMO provides the same coupling data to OpenIFS in iterations 2 and 3, which leads
to OpenIFS producing the same numerical solution in these iterations, etc.

In Figure  A.1b , we mark all duplicate communication and computation in gray to illus-
trate this effect. All other arrows depict the production of new numerical solutions and
the communication of new interface data, as long as the Schwarz iterations have not con-
verged. We can remove the duplicate operations from Figure  A.1b and ”compress” the
diagram to obtain a mathematically equivalent depiction of the thus implemented algo-
rithm in Figure  A.1c . Comparing this to Figure  2.5b , we see that this corresponds to a
multiplicative SWR algorithm.

In our implementation, the Schwarz window size is equal to the simulation length,
which makes the explanation and visualization of the behavior more complex. However,
even in this case the implemented algorithm corresponds to a variant of a multiplicative
SWR method. We have numerically confirmed these observations for a single coupling
window and for longer simulations. We have also seen in example simulations that the
multiplicative SWR method takes about half as many iterations to converge as the addi-
tive SWR method, as expected (Gander,  2008 ).

Notably, the duplicate computation and communication makes this realization of a mul-
tiplicative SWR method highly inefficient. We do not advise using this approach for any-
thing that exceeds computationally cheap simulations like the short experiments we did
with the EC-Earth AOSCM.
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Ωoce
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(a) Control flow if the sequential atmosphere-first algorithm is used in the first Schwarz iteration.
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(b) As in (a) but duplicate communication and computation is marked in gray.
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1 2

3

4

5

(c) Effectively implemented algorithm, which looks identical to Figure  2.5b .

Figure A.1.: Diagram to illustrate how a sequential coupling algorithm combined with our
additive SWR method reduces to multiplicative SWR. Colors and notation as
in Figure  2.5 .
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